Multimed Tools Appl @ CrossMark
DOI 10.1007/s11042-015-2892-y

Fusion feature for LSH-based image retrieval
in a cloud datacenter

Jianxin Liao" « Di Yangl"” - Tonghong LiZ- Qi Qi'.
Jingyu Wang1 - Haifeng Sun'

Received: 12 May 2014 /Revised: 24 June 2015 / Accepted: 17 August 2015
© Springer Science+Business Media New York 2015

Abstract Since the emergence of cloud datacenters provides an enormous amount of resources
easily accessible to people, it is challenging to provide an efficient search framework in such a
distributed environment. However, traditional search techniques only allow users to search images
over exact-match keywords through a centralized index. These methods are insufficient to meet
requirements of content based image retrieval (CBIR) and more powerful search frameworks are
needed. In this paper, we present LFFIR, a multi-feature image retrieval framework for content
similar search in the distributed situation. The key idea is to effectively incorporate image retrieval
based on multi-feature into the peer-to-peer (P2P) paradigm. LFFIR fuses the multiple features in
order to capture the overall image characteristics. And then it constructs the distributed indexes for
the fusion feature through exploiting the property of locality sensitive hashing (LSH). We
implement a prototype system to evaluate the system performance with two image datasets.
Comprehensive performance evaluations demonstration that our approach brings major perfor-
mance and accuracy gains compared to the advanced distributed image retrieval framework.

< Jianxin Liao
liaojx@bupt.edu.cn

> Di Yang
yangdi.bupt@gmail.com

Tonghong Li
tonghong@fi.upm.es

Qi Qi
qiqi8266@bupt.edu.cn

Jingyu Wang
wangjingyu@bupt.edu.cn

Haifeng Sun
sunhaifeng_1@ebupt.com

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China

Department of Computer Science, Technical University of Madrid, Madrid 28660, Spain
China United Network Communications Limited, Beijing 100033, China

Published online: 27 August 2015 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-015-2892-y&domain=pdf

Multimed Tools Appl

Keywords Cloud computing - Content based image retrieval - Peer-to-peer - Locality sensitive
hashing - Fusion feature

1 Introduction

Nowadays, since smart phones, tablet computers and many lightweight devices have been
penetrating into our lives, the digital image equipments on devices enable end-users to capture
and edit their own image content, sometimes of high intellectual or commercial value. With the
widespread use of devices, more and more images are being shared and circulated over the
internet. One example of such an environment is the “cloud” that stores a large number of
resources collected from all around the world. It allows users to access resources more flexibly,
when storage and computation are switched from the clients to the “cloud” [27]. The paradigm
offers essential properties including location independent data storage, on-demand self service,
and data access independent of locations and time [8].

Cloud-based services are deployed on the datacenter which is a fundamental block and
provides highly durable storage [26]. Therefore, it is important to choose appropriate topology
to establish the high-performance datacenters that satisfy the requirements of searching and
analyzing large dispersive datasets. Most commercial cloud infrastructures are centralized. In
such a model, the central points are responsible to establish the central index for resources, but
vulnerable to failures caused by fires, power outages, natural disasters, etc. [38]. To address
this problem, decentralized datacenters are designed according to the peer-to-peer (P2P)
model, which can provide better scalability and adaptability. The P2P-based datacenter can
be built by connecting many individual peers, without any central monitoring or coordination
component [14]. Each peer takes charge of part of data and replicas to improve the clouds’
reliability and resilience to correlated failures. It is well known that P2P techniques are very
likely to be adopted in Clouds [11].

The P2P performance mainly depends on the topological structure and the index placement.
Unstructured P2P systems like Gnutella [13] have little control over the topology and the index
placement. This structure does not guarantee the efficiency of data search and causes high-cost
communication, since the query is spread without any global planning. In contrast, structured
P2P systems have tight control led over the overlay topology, and only published the resource’
indexes to the special nodes through distributed hash table (DHT). Chord [32], CAN [28§], and
BATON [17] are classical examples of structure P2P networks. In DHTs, the file’ name is
generally hashed into a key and the query is forwarded to the target node based on the key. The
number of lookup hops for locate files can be limited to the logarithmic number by using the
deterministic routing algorithm. The DHT structure is adopted in our work due to its great
extensibility.

Considering an application scenario of image retrieval in the distributed datacenter, millions
of files including images, videos and plain texts are transferred into the datacenter which adopts
the decentralized P2P paradigm, as Fig. 1 shows. The content providers upload their significant
resources to the datacenter. In addition, cloud customers can also upload interesting images to
their Facebooks or Microblogs which are deployed in cloud datacenters. When an authorized
cloud customer issues a query request, it is sent to the datacenter which takes charge of search
processing. Afterwards, the query results are sent back to the customer. However, it is challeng-
ing to locate files in such a distributed datacenter which stores a large amount of files. As a case
of study, we present an image retrieval application implemented on the decentralized datacenter.

@ Springer

Multimed Tools Appl

CY, Ycl XX T#l+

Que,
~J I Espgnig %@
) uesy
2 Q“GY‘J' ge‘\/ z
o P -
o ’
& :
Content providers Cloud Datacenter Cloud customers

Fig. 1 Image retrieval in the distributed datacenter

Although throughout this paper we focus on image retrieval, our methods are also applicable to
multimedia retrieval domain where similar search is performed in the P2P paradigm.

Existing models which are usually centralized, are not scalable enough to work in the large
scale distributed setting. Additionally, most of them only offer keyword search, i.e. they return
the images that are associated with a given set of keywords [3, 13]. However, since it is
difficult to annotate images very exactly, identifying images in this way is inaccurate and may
be insufficient to users’ requirement sometime. In some applications, users may request
inexact queries such as “find the top-k images which are most similar to a given sample”. It
is difficult for humans to describe how an image is similar to the sample with keywords [18].
However, the content-based image retrieval (CBIR) can find similar images through the image
content instead of keywords. In our previous work, we present a CBIR system called LRFIR
[22] based on a single feature for the distributed environment. It only adopts the texture feature
to represent images, which is suitable for images containing texture. However, such a feature
can hardly describe the images with various landscape. Motion Picture Experts Group 7
(MPEG-7) includes the color, texture and shape descriptors. They represent visual contents
at different aspects, and suit to descript various images especially with landscape.

According to the idea of LRFIR, if the each feature is searched one by one, the lookup cost
is increased. Also, it is very difficult to create a type of feature which considers color, texture
and shape at the same time. In the paper, we present a novel CBIR system called LSH-based
Fusion Features for Image Retrieval (LFFIR) for the distributed datacenter. LFFIR supports
content similar search leveraging an early multi-feature fusion technique which integrates
color, texture and shape features in order to perfectly describe image contents. Different from
LRFIR, LFFIR focuses on multiple features which are suitable for searching natural landscape
images containing the various landscape with rich colors. The efficient index construction
service (ICS) and query processing service (QPS) are proposed for LFFIR.

In the index construction service, LFFIR leverages image feature extraction algorithms. It
extracts the color, texture and shape features. Then the three types of vision features are fused

@ Springer

Multimed Tools Appl

into a feature, from which the content similarity can be measured quantitatively. LFFIR operates
on top of a DHT, which has properties such as scalability and self-organization. Inspired by the
property of the locality sensitive hashing (LSH), fusion feature of similar images are probabi-
listically assigned to the same resource ID [16]. In this way, the indexes of similar images are
more likely published into the same nodes through overlay routing. When a query is propagated
to datacenters, the query processing service produces a set of query messages based on the same
LSH functions. The messages are selectively routed to nodes which are more likely responsible
for the results. Finally, we implement a prototype system based on Next Generation Service
Overlay Network [21]. It is used to evaluate the performance of our algorithm in two image
datasets, i.e., Corel [23] and the subset of Caltech 101 Object Categories [20]. The experiments
show that our scheme achieves high accuracy with only a small number of lookup hops,
comparing to the advanced distributed image retrieval framework.

In this paper, our main contributions are as follows: (1) We combine techniques from image
multiple features and P2P computing to implement an efficient indexing and locating ap-
proach. The distributed index is constructed based on image content represented by the
multiple features instead of a single feature. (2) We exploit LSH to produce the same identifiers
for similar images and queries. The LSH-based approach is very effective in terms of reducing
the lookup hops, which is independent of the DHT overlay size. (3) The multi-feature fusion
index considers color, texture and shape feature, and brings down the lookup cost introduced
by the multi-feature retrieval separately.

The rest of the paper is organized as follows. Section 2 shows an overview of related work.
Section 3 presents the framework of LFFIR. Section 4 describes the index construction service
and the query processing service. Section 5 evaluates the performance of our approach.
Finally, Section 6 concludes our discussion.

2 Related work

The P2P networks could be categorized into three models: unstructured, hybrid and structured.
The organizing structures and routing mechanisms for information retrieval in the P2P network
also hold for the area of image retrieval.

Searching in unstructured P2P systems like Gnutella [13] floods the query to all the
neighbors. Lv et al. [24] propose random walks to improve the search performance of flooding.
At each step, random walks randomly choose one of neighbor nodes to forward query
messages, without considering the resource statistical information of neighbor nodes. To
overcome the blind search, the concept of “Routing Indexes” is introduced by Crespo and
Garcia-Molina [5]. Its basic idea is that query messages are forwarded to the neighbor nodes
that are more likely to have the required answers. To avoid being trapped around the local
optimum, Gaeta & Sereno [12] choose the neighbor node to forward the query, according to
the probability function of the number of connections and the distance from the query
originator. However, these search strategies do not guarantee the lookup time and consume
too much network resources. Moreover, they are only suited for multimedia retrieval based on
their names or short textual description. Therefore, the search accuracy is limited to the
accuracy of text tags and multimedia content is ignored. The decentralized interesting-based
location solution [31] loosely organizes peers into an interesting-based structure for fast
content location, where each peer creates an interesting-based shortcut to another peer with
interesting content. But it still relies on the message flooding when there is no shortcut

@ Springer

Multimed Tools Appl

available. Eisenhardt et al. focus on the source selection [9], where each peer gathers its own
data into clusters. When queries are issued, these clusters serve as the potential selection
sources of interesting data. DISCOVIR [19] links peers with similar data using attractive
connections, which is independent of message flooding. However, when a new peer joins
DISCOVIR, it has to broadcast its signature messages through attractive connections to find
out peers sharing the similar content with the new one. P2P-CBIRM [4] adopts the similar way
to group peers, but extends DISCOVIR to support the capability of knowledge discovery and
image data mining. The small world indexing mine (SWIM) [1] creates a small world network
for images which are connected according to the MPEG-7 descriptor similarity. However, due
to the lack of global information, it is difficult for these methods to discover the new topics no
longer belonging to the current cluster, without broadcasting signature messages to the overall
network. And the query may not be forwarded to the most similar clusters.

Since unstructured P2P systems have little controlled over network topology, the hybrid
infrastructures are proposed, which gather peers storing relevant files into the same community
to reduce unnecessary traffic. Many methods employing this model can be found, such as
SETS metric space, source selection, DISCOVIR, P2P-CBIRM, and SWIM. Bawa et al. [3]
propose the topic-segmented overlay which assigns nodes with similar contents (topics) to the
same group. But this method needs center nodes to manage topics segment and may suffer the
single point of failure. Vlachou et al. [36] propose that peers sharing similar data are linked to
the same super node, while super nodes are organized as an M-Tree structure.

In this paper, we focus on the information retrieval in the decentralized structured P2P
paradigm. There are many studies in this issue, such as MCAN [10], M-Chord [25], Psearch
[33], Prism [29] and iDISQUE [39]. MCAN using CAN as the underlying structure adopts a pivot
technique, iDistance, to map objects to an N-dimensional vector space. But the chosen pivots are
preprocessed in a centralized fashion, and then distributed to peers. In Psearch, the Latent
Semantic Indexing (LSI) is used to generate a semantic space. Then, this space is mapped to a
multi-dimensional CAN which has the same dimension as the data space. However, different
overlays may have different dimensionalities, since the dimensionality of CAN depends on the
dimensionalities of various datasets. In Prism, it stores multiple indexes for one object in many
Chord peers based on the distances between the object’s vector and reference vectors, so that
indexes of similar objects are clustered to the same peer. But reference vectors are still chosen in a
centralized fashion, which is not well-suited for large dynamic datasets. Zhu et al. [40] generate
the same index for semantically close files by LSH and Vector Space Model (VSM), with the
purpose of answering queries by visiting a small number of nodes. But these hash values are
directly used as resource keys, which destroy the load balancing of Chord. In the iDISQUE
framework, the data on each peer is clustered, and then LSH functions only map cluster centers to
Chord resource keys. The key of the cluster center represents that of the data in the cluster.
However, the hash values of queries may not be equal to these of cluster centers.

Considering fusion features, Wang et al. [37] propose a CBIR method based on an efficient
integration of color and texture features. The integration provides a robust feature set for color
image retrieval. Snoek et al. [30] study of the two classes of fusion schemes, namely early
fusion and late fusion. And they compare the performance of the two kinds of fusion. Tian et al.
[34] construct the Edge orientation difference histogram (EODH) descriptor for each edge
pixel. And they integrate EODH with Color-SIFT to build weighted codeword distribution.

Many work adopts iDstance to establish indexes, M-Chord is the classical one. Batko et al.
[2] propose an distributed image retrieval framework based on the M-Chord [25]. The core
idea of M-Chord is to map the image feature to a one-dimensional domain and navigate in this

@ Springer

Multimed Tools Appl

domain using the Chord routing protocol. Its data clustering and mapping are still completed in
a centralized manner. This approach exploits the idea of a vector index method iDistance [29],
which partitions the data space into clusters (C;), identifies reference points (p;) within the
clusters, and defines one-dimensional mapping of the data objects according to their distances
from the cluster reference point. The M-Chord mapping works basically as follows: Several
reference points are selected globally from the sample dataset. The data space is partitioned in
a Voronoi like manner into C; (each object is assigned to its closest pivot). Following the
iDistance idea, the M-Chord key for an object x € C; is defined as mchord(x)=d(p;, x)+ic.
Image retrieval adopts an approach of kNN(g, k) queries evaluation that exploits the range
search. The idea is to estimate radius 7, so that the Range(g, ») query returns at least k nearest
objects. For each cluster, determine interval of keys to be scanned: /,_[d(p;,q)+i-c-r, d(pi,q)+
i-ctr]. An request is firstly sent to the node responsible for the midpoint of interval 7;. If it is not
responsible for the whole interval, forward the request to the predecessor and/or successor.

3 System overview

In this section, we present an overview of the LFFIR framework. The overall aim is to provide
a multi-feature retrieval framework in the distributed datacenters which store a large number of
resources. In such a setting, it is the naive solution that each feature is searched at a time, then
the final results are given, after all the features is traversed. Obviously, since searching a
feature needs a number of hops [22], multi-feature incurs high-cost communication.
Analogously, it is hard to create a feature which takes into account all the feature such as
color, texture and shape [7]. Departing from conventional approaches, we propose a scalable
scheme, called LFFIR, which supports content similar image retrieval in the distributed
network, utilizing indexes based on multiple features information.

In the underlying layer of LFFIR, a large number of nodes are organized into the structured
P2P network (Chord [32]), to offer the routing service. Inside the network, the ID space
generated through uniform hash functions is ranged from 0 to 2"-1,where /=160. In DHT, the
identifier is usually set 160-bit strings [35]. Each node is assigned an /D drawn from the space,
and is responsible for the object key range between its /D and the ID of the previous node on
the Chord. In an n-node network, Chord routes a message to its destination in O(log) hops.
LFFIR can support efficient routing, due to the DHT layer, where indexes publishing and
queries routing are automatically accomplished.

Each node in LFFIR maintains its own data objects. To publish indexes to the network, for
each object, LFFIR constructs a few index messages, each of which contains the resource ID,
the image feature vector and the nodelD of the data owner. The indexes are sent to the nodes
responsible for the resource /D. When a query message is submitted, it is only forwarded to
nodes which are likely to be responsible for the answer.

The challenge is how to establish the distributed index for multi-feature, and probabilisti-
cally gather the index of content similar images to the same node, due to the lack of global
information. To solve the problem, we fuse multiple features, and then build distributed
indexes through a family of LSH functions. To obtain a pattern representation, we leverage
off the early feature fusion approach which analyzes the content before processing retrieval.
LFFIR extracts image color, shape and texture feature, and then fuses them into a single
representation. Due to the property of local sensitivity of LSH, it is more likely to assign
similar fusion features to the same buckets of the hash table. Then they are mapped into

@ Springer

Multimed Tools Appl

resource /Ds without loss of local sensitivity. Afterwards, these indexes including resource /Ds
are published to the target nodes through overlay routing. In this way, the indexes of similar
images are clustered to the same node with high probability. Instead of flooding queries, query
messages are routed to special nodes which may answer the queries.

Figure 2 shows the interactions among key components of LFFIR. A client uses LFFIR to
share local objects or issue the query. LFFIR is located between users and the DHT layer,
which contains two services of index construction and query processing. We first discuss the
index construction service. Each node has a local image database, where images are shared
with other users. In addition, each node has a multi-feature fusion which generates fusion
features specific to different image formats. The image feature fusion accesses images in the
local database, which adopts various algorithms to fuse color, shape and texture features in
order to analyze image content. For each feature vector, a set of LSH functions are adopted to
generate resource /Ds based on the hash values. They also specify the number of index replicas
of shared objects and the number of lookup requests to be sent for a query. At the time of the
system start, these hash functions are generated and used in all nodes. For each hash value, the
index construction constructs the index messages and publishes them to the DHT layer. Once
receiving an index message from the DHT layer, the node inserts it in the index storage
according to resource /Ds. In addition, the image indexes in local database are refreshed after a
period of time to ensure the validity of resources.

The query processing service generates the resource /Ds and the query messages in the
same way as ICS. Then the query messages are forwarded to nodes responsible for the query
feature. Once receiving the query message, the destination nodes do a local search to identify
the top T best matching results, and returns them to the query node. The user surface ranks
returned results based on the Euclidean distance and presents the final results to users.

4 DHT-based CBIR approach

In this section, we describe details of the index construction service and the query processing
service designed for LFFIR.

Query image ——» Index publishing
_; P it < —>> Query search
E Feature Extraction (_ " " Index construction service
() Query processing service

|
|
|
Shape Feature :
) N
- R e e ! |
| Index |
Images dataset 1| construction || Index store
i)

A

|

Query/index fromi | |

other nodes | :

| |

A J Ly

(DHT)

|

|

|

'

|

|

| Color-Texture-

: Stape Festurs
. |
X |

'

|

Query results
to other
nodes

Publish index message

Fig. 2 Components of a LFFIR node

@ Springer

Multimed Tools Appl

4.1 Features extraction and fusion

When a user shares an image, LFFIR automatically extracts the image features. It adopts
MPEG-7 descriptors, which convert visual content to a measurable feature space. The MPEG-
7 standard provides the multimedia content description interface, which includes a set of
descriptors, such as color, shape and texture, to support image retrieval [7]. These visual
descriptors represent human visual perception as feature vectors, so that the similarity of two
images in appearance can be evaluated.

In recent years, research on color features has focused more on the summarization of colors
in an image, that is, the color signature construction. In LFFIR, we use Grid Color Moment
(GCM). Each image is partitioned into 3x3 grids and three types of color moments are
calculated for each grid. Thus, an 81-dimensional color moment is obtained for the color
feature.

The efficient and robust representation of the shape plays an important role in retrieval. For
shape feature, we employ an edge direction histogram. A Canny edge detector is used to get
the edge image and then the edge direction histogram is computed. Each histogram is
quantized into 36 bins of 10° each. An additional bin is used to count the number of pixels
without edge information. Hence, a 37-dimensional edge direction histogram is used for the
shape feature.

Texture features are intended to describe the granularity and repetitive patterns of surfaces
within an image. In image retrieval, a popular way to form texture features is to use Gabor
filters. Each image is scaled to 64 x64. Gabor wavelet transformation is applied on each scaled
image with five scale levels and eight orientations, resulting in 40 sub-images. For each sub-
image, three moments are computed: mean, variance, and skewness. Thus, a 120-dimensional
feature vector is adopted for the texture feature.

LFFIR adopts early fusion features [30] before performing retrieval. After analysis of the
three types of visual features, they are fused into a 238-dimensional feature to represent each
image in the database.

4.2 Publishing LSH-based index messages

When a user shares an image, LFFIR constructs and publishes index messages after image
features are extracted. The remaining question is how to construct resource /D for the fusion
feature and answer the query efficiently. LFFIR computes resource IDs utilizing p-stable LSH
whose locality sensitive property is explored [15]. The intuition behind this approach is that the
similar fusion features are assigned to the same resource /Ds and their indexes likely to be
stored in the same node.

4.2.1 Locality-preserving mapping
The basic idea of LSH is to use a family of hash functions which map similar objects into the

same value with high probability [16]. Thus, a LSH family is defined as: a family H={h:S— U}
is called (r1,7,,p1,p2)-sensitive for any two points ¢,veD:

If dist(q,v)<ri then Pry(h(q) = h(v))=p, (1)

@ Springer

Multimed Tools Appl

If dist(q,v) > ry then Pry(h(q) = h(v))<p, (2)

where D specifies the domain of points, dist is the distance metric in this domain and Pr is the
collision probability.

Pry(h(q)=h(v)) indicates the collision probability, i.e., the probability of mapping
point v and ¢ into the same buckets. If »;<r, and p;>p,, these functions have the
property that close feature vectors are more likely to be mapped to the same hash
value than those far apart. In practice, several hash tables are built to increase the
collision probability.

In this work, we employ the family functions of p-stable LSH [6], which exists for p. Since
the Euclidean distance is supposed to be the most widely-used distance metric, the Gaussian
distribution working for the Euclidean distance is the 2-stable distribution. The hash function
hyp is defined as follows:

_av+b

ha,b(v) - w (3)

Where a is a d-dimensional vector whose elements are chosen independently
from the p-stable distribution. b, a real number, is randomly selected from the range
[0, W]. Each hash function ha,b(v):Rd—>Z maps a d-dimensional vector v into an
integer.

The actual indexing is done by using LSH functions and building several hash
tables, in order to increase the collision probability. In fact, m hash tables
G=1{gy,....gm} are constructed, where m is randomly chosen. With & independent hash
buckets g;(v)=(h;(v),...,h(v)), the hash result is a k-dimensional integer vector, i.e.,
G={g: R'"—>Z}. In this way, if two close feature vectors is hashed by more hash
tables, they may obtain the same hash value at least in one hash table g, where i=
1,...,m. As a result, similar objects are hashed to the same bucket at the higher
probability, given by 1-(1-p%)™.

Subsequently, an integer vector Z* is obtained from one hash table g;, where i=
1,...,m. The resource identifier space for Chord is one-dimension, while the dimension
of the feature vectors may be very high. In the next step, the k-dimension space is
transformed to the one-dimension space, i.e., Zk—>N, without destroying the local
sensitivity. On the other side, the load, defined as the number of indexes stored on
nodes, should be kept balanced as much as possible. To construct a resource ID, i.e.,
fusID, the mapping function J(v) is defined as:

k
SJusID; = J(Z l_zlh,-(v)-d,-),where heg; and j=1,...,m. (4)

d; is a randomly chosen non-zero integer. J function is denoted as the consistent hash
function SHA-1.

We call each J a resource /D mapping function, and denote ¢, the function set {fusiDy,...,
fusID,,}. Therefore, given ,,={fusID,,..., fusID,,}, we can map a point v to m Chord keys
SusID;(v),..., fusID,,(v).

@ Springer

Multimed Tools Appl

Obviously, as discussed in the previous section, similar vectors should have the same fitsID
after this mapping, without destroying local sensitivity. Given two similar vectors v; and v, we
would have g{v,)=gi(v,), where i=1,...,m. If t(v)=2f: 1hi(v)-di=g(v)-[dy,d>, ..., d;]". Then we
have: |t(v)—t(v2)|=(gi(v1)—gi{(v2)):[d1,d>, ...»di]” In that way, we have #(v;)=t(,), i.e., if two
similar vectors have the same hash value in a hash table, they will have the same fusID. Note
that function does not destroy the locality sensitive property of LSH.

Algorithm 1 Index construction
. Input: vas the image fusion feature
. 9i, each of which contains k hash functions h;

. Generate k random integer numbers, each of which is d;
. foreachg;, i=1tom

. for each h;, j=1tok

. fusID [i]+=h;(V)xd;

. end for

. end for

. for i=1tom

10. publish the index < fusID[1i],Vv,nodeID> into the DHT layer

ll.end for

On the other side, in order to fully utilize the Chord /D space and keep load balancing, the
consistent hash function SHA-1 is employed to distribute indexes as symmetrical as possible.

W oo JOo Ul & WD

4.2.2 Index construction service

In this section, we describe the detail process of the index construction service (ICS) in LFFIR.
The purpose of the service is to cluster the indexes of similar fusion features to the same node with
high probability. ICS adopts p-stable LSH to preserve fusion feature similarity and distributes the
indexes to the Chord as evenly as possible. That is different from the traditional location approach
[22], where DHTs access an image through the hash key of a single feature or key words.

ICS generates the index messages based on the same fiusIDs of the fusion features, and then
publishes them to special nodes through the DHT layer. For each image in the local database, the
Feature Fusion is firstly invoked to extract its visual fusion feature f,. After that, mxk hash
functions are generated, which map the feature vector to m integer vectors, e.g., G={g: R*—Z"}.
Next, each integer vector is mapped to one resource ID, e.g. Z*— N, without destroying the local
sensitivity of LSH. And then ICS maps f, into m index replicas @,,= {fusID,, fusID.,....fusID,,},
where fisID= J(f,).

After the fusIDs ¢,, of an image is obtained, ICS constructs indexes in the form of < fusID;,
1, nodelD > where i=1...m, nodelD is the address of the object owner. ICS routes each index
message to the node responsible for fitsID through overly routing, as shown in the right part of
Fig. 3. Once a node receives the index message from the DHT layer, ICS inserts the received
message into the index storage. The indexes with the same fissID in index storage are gathered
into the same list to facilitate the location of local indexes. The whole procedure is shown in
Algorithm 1.

The number of index replicas published for an image is a system parameter. It depends on
the number of hash tables m and poses off between query accuracy and communication cost.
As above discussed, constructing more index replicas for an object, i.e., generating hash tables,
not only means more index messages to be published, but also provides better chance of
finding the images similar to the query.

@ Springer

Multimed Tools Appl

Fusion p-stable hash J J p-stable hash Fu?iun
| |
¢]
| |
|
|

Image

|
datesets | Feature vectors

|
| ! »
! Feature vector | Query image
|

Hash values |

Fig. 3 Publishing the indexes and the query image

Algorithm 2 Query processing

. Input: f, as the query image feature vector

. gi, each of which contains k hash functions hy
. k integer numbers, each of which is d;

. foreachg;, i=1tom

. foreach h;, j=1to k

. fusID[i]+=h;j(f,) x d;

. end for

. end for

9. for i=1tom

10. publish the query message < fusID[1], f, ,nodeID>

11. end for

12. Merge the results that satisfy the query from all replies

13. Establish connection to the data owner

So we should make a tradeoff between m and the query efficiency. A node can decide the
value of m depending on different cases. If the object is of importance, the number of indexes
can be constructed more.

The number of buckets in each hash table, £, is another system parameter. And it poses a
trade-off between the query efficiency and the load balancing. Fewer £ means more images
cluster to the same hash value, e.g., the same fus/D. That can lead to fewer clusters and
accordingly each cluster has more indexes. Once a fitsID is located, more relevant images can
be obtained when it is in fact similar to the query. That can also cause high load of nodes in
charge of the fusID, if k is set too small.

All the indexes of shared images in the node are refreshed periodically, e.g., once a
week or a month. If an image is added or deleted, its indexes are constructed or
removed. Depending on the similarity between the modified image and the original
one, we can determine whether or not the indexes should be reconstructed. If the
similarity between the two versions is less than the threshold, the indexes remain
unchanged. Otherwise, the ICS is invoked to re-construct the indexes. Besides, when
a query is issued, LFFIR first checks the caches to make sure that there are not
suitable answers. Otherwise, the ICS is invoked to publish query messages to Chord.

0 o0 U Wi

4.3 Distributed query processing
The objective of the query processing service (QPS) is to answer a query efficiently and

effectively. Search efficiency is measured by the number of network hops for a query. Search
effectiveness is measured by quality of search results, i.e., recall and precision.

@ Springer

Multimed Tools Appl

4.3.1 Query processing

In this section, the QPS is discussed, supposing that all the image indexes are published into
the DHT layer. When a node issues a query image, QPS is invoked and searches images which
have similar color, texture and shape. It is analogous to the process of index constructing.
Query images are converted to a set of fissIDs. And then the query messages are published to
the special nodes.

As above described, the fusion feature vector f, is transformed into a set of resource
IDs={fusID,, fusID.,..., fusID,,}, where fusID;=3(f;) by mxk p-stable LSH function. Note
that the set of hash functions used in QPS is the same as that in ICS. Afterwards, the node
sends the query messages for each fusID in the form of < fusID;, f;, nodeID>where i=1...m,
and nodelD is the address of the query node. However, if the images satisfy the requirement of
the query, they are more likely to be retrieved due to the same fisIDs. Therefore, the similar
search of LFFIR is probabilistic and relies on the number of indexes to achieve highly accurate
query results.

Once a query message reaches its destination through the DHT layer, the node in charge of
fusIDs may probably contain the colliding /D. It checks the local index storage to find if there
exists the same fisID as it receives. Afterwards, the node that receives the request computes
the similarity between the query feature and the image features in its index store. The similarity
measure is specified by the Euclidean distance. To reduce the network transmission cost, it
only returns the top T qualifying indexes. The whole procedure is shown in Algorithm 2.

Similar to ICS, the number of query messages also depends on the number of hash tables m.
It impacts on not only the number of request messages to be sent but also the query accuracy.
When m is increased, more query messages are routed to more candidate nodes, which causes
high query cost. But it also increases the probabilities of finding the images similar to the
query. In contrast, if m is too small, the query cost is reduced, while the accuracy might also be
decreased.

On the other side, when k becomes larger, the value of m has to be increased to ensure the
query accuracy. Increasing k generates more clusters that are spread on more nodes. Each
cluster contains fewer indexes of similar objects. Consequently, it needs more index replicas to
be sent in order to search more candidate nodes. In this way, the search efficiency is
guaranteed.

After the query node receives all the results, it merges them before showing them to users.
The results of the query are obtained by sorting returned indexes according to the Euclidean
distance, and the top T ones are chosen to form the final result list. Then connections are
established between the query node and data owners to transmit the final results to the query
node. Finally, the top 7" most similar images are shown to users.

5 Performance evaluation

5.1 Datasets and system settings

In our experiments, two image datasets are used: Corel 10000 and the subset of Caltech 101
Object Categories. The Corel dataset commonly used contains 10,000 images of various
contents, such as flowers, food, wave, pills, sunset, beach, car, horses, fish and door, etc. It

contains 100 categories and each category contains 100 images in JPEG format. For the

@ Springer

Multimed Tools Appl

second dataset, 3700 images are randomly chosen from Caltech 101 Object Categories. We
choose 75 objects of sunflower, dollar, headphone and faces, etc. And each object contains 50
images. In each category, we randomly choose 20 images, so 2000 queries are drawn from the
Corel and 1500 queries from Caltech 101 Object Categories, respectively. Image feature
vectors are extracted as described in Section 4.1.

Queries are initiated at randomly chosen nodes, after all the nodes join LFFIR. The reported
results are the average values over all the queries. Unless otherwise noted, the default
values are W=2.0 for p-stable hash functions. The default network size N is fixed to
1000. Besides, for the image retrieval task, it is important to define suitable metrics
for the performance evaluation. Two metric is used: Recall and Precision. Recall rate
is defined as the percentage of relevant retrieved images among all the relevant
images in the dataset. Precision is defined as the percentage of relevant images among
the retrieved images. In order to compare with LRFIR [22], we have implemented the
method and parameters which are set as described in [22]. Our aim is to evaluate the
performance of the distributed indexes of a signal feature and multiple features. To
fairly compare against this method, we ignore the processing of relevance feedback in
LRFIR. We report here the best results which have achieved a fair balance as well.

We compare our work with the image retrieval framework based on the M-Chord. We select
20 reference points for M-Chord, and generate 20 corresponding clusters. In the experiments,
we only visit the top 10 most promising clusters, according to the distance between the query
and the reference points. ¢ is set to 10,000.

5.2 Query accuracy

We use two metrics to verify the query accuracy of our system. As shown in Figs. 4 and 5, the
corresponding query accuracy is evaluated with the different number of hash functions and top
images. The x-axis represents the number of top ranked images, varying from 10 to 100 for
Fig. 4 and from 5 to 50 for Fig. 5. The y-axis denotes the average recall and precision
measured on the top ranked images for both datasets. m and k represents the number of hash
tables and buckets, respectively. As both datasets show, the average recall increases, while the
average precision decreases, when the number of top images grows. The average recall and
precision rapidly rise by increasing the number of hash tables m while decreasing the number
of buckets %, for both datasets.

Corel10000 Corel10000
T 45

*-m=5 k=15(LRFIR)
—#—m=10k=15(LRFIR)
40 —4—m=10k=20(LRFIR)
\ ——m=20k=20(LRFIR)

*--m=5k=15(LRFIR)
—#—m=10k=15(LRFIR)
—4—m=10k=20(LRFIR)
——m=20k=20(LRFIR)
“#-m=2k=9
—+—m=12k=9
—e—m=12k=18
i i H : H “rm=20k=18 | i i H i i
30 20 30 40 50 60 70 80 90 100 qO 20 30 40 50 60 70 80 90 100
Number of top images Number of top images

Average recall(%)
>
Average precision(%)

Fig. 4 Accuracy evaluation with Corel. a Average recall. b Average precision

@ Springer

Multimed Tools Appl

Caltech 101 Object

Caltech 101 Object

~%--m=1k=10(LRFIR)
—#—m=5k=10(LRFIR)
14} —4—m=5 k=20(LRFIR)
——m=15k=20(LRFIR)
- -m=5k=10
—+—m=10k=10
—e—m=10k=20

*--m=1k=10(LRFIR)
—#—m=5k=10(LRFIR)
—&—m=5 k=20(LRFIR)
——m=15k=20(LRFIR)

-7 -m=5k=10
——m=10k=10
——m=10k=20

~*-m=20k=20 = -m=20k=20

Average recall(%)
Average precision(%)
)

2

S 10 15 Zb 25 3‘0 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Number of top images Number of top images

Fig. 5 Accuracy evaluation with Caltech101 Object. a Average recall. b Average precision

The reason is that when increasing m, the collision probability of content-based similar
images grows. On the other hand, decreasing & can lead to fewer clusters, accordingly more
images are gathered into a cluster. Once a cluster is located, many relevant results are searched.
However, for Fig. 4a, b, both m=12, k=9 and m=20, k=18 achieve the best recall rate and
precision. They almost have the same value. A similar observation can be made in Fig. 5a, b,
where both m=10, k=10 and m=20, k=20 also achieve the best accuracy. We can choose m=
12, k=9 for the Corel and m=10, k=10 for the Caltech101 Object, since the computational
overhead is reduced with the small number of hash functions.

Figures 4 and 5 also show comparing results versus the number of hash tables for two
datasets. We see a big increase in terms of accuracy for both datasets. For example, under the
Corel, the average recall of LFFIR (m=12, k=9) achieves about 6 % improvement over LRFIR
(m=10, k=15) on the top 100 images in Fig. 4a. With respect to the average precision, LFFIR
represents about 10 % increase on the top 10 images in comparison with LRFIR, as shown in
Fig. 4b. For the Caltech101 Object, we can also obtain the improvement of query accuracy.
The LFFIR(m=10, k=10) outperforms the LRFIR(m=5, k=10) by 6 % on the top 50 images
in Fig. 5a and enjoys 9 % improvement on the top 5 images in Fig. 5b. Even in the worst cases

Corel

Corel
T a5 T T T T T

*-M-Chord »-M-Chord

[—*—m=12k= ; 4
16 m=12k=9(LFFIR) s s a0k, —#—m=12k=9(LFFIR)

351

301

Average recall(%)
Average precision(%)

251

201

L H L L L L L H L H H L L L i H
410 20 30 40 50 60 70 80 920 100 10 20 30 40 50 60 70 80 90 100
Number of top images Number of top images

Fig. 6 Corel aquracy under comparison with M-Chord

@ Springer

Multimed Tools Appl

Caltech 101 Object Caltech 101 Object
T T T T

T T T 45 T T T

*-M-Chord % M-Chord

—#—m=10,k=10(LFFIR)
4F

—#—m=10k=10(LFFIR) |

Average recall(%)
Average precision(%)

I i L H

i i L L i
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50

i L L H 10 L i

Number of top images Number of top images

Fig. 7 Caltech aquracy under comparison with M-Chord

where m=10, k=20 for LFFIR and m=1, k=10 for LRFIR, the recall of the former 5 % higher
than that of the latter on the top 50 images in Fig. 5a. In terms of precision in Fig. 5b, LRFIR is
11 % lower than LFFIR on the top 5 images.

Figures 6 and 7 show the comparison of LFFIR and M-Chord in terms of the query
accuracy. They have almost the same recall and precision rates in two datasets.

5.3 Load balancing

In this section, Figs. 8 and 9 show the effectiveness of load balancing with various arrange-
ments. We define the node load as the number of index messages stored on a node. In Fig. 8,
the x-axis shows the percentage of nodes, where the number of nodes varies from 10
to 5000, and the corresponding values represent the percentage of indexes assigned to
these nodes. Note both datasets show much less skew on load distribution as the
number of nodes increases. That indicates the load balancing is almost achieved. This
is because when the number of node increases, the interval between nodes becomes
smaller and indexes are distributed to more nodes. Therefore, there are not many
indexes in each node.

Corel10000 Catltech 101 Object
100 100 T
90+ 1

S0f 1 ol J
6 /5 4
3 7 £ mof |
S 60 A 1 €
b s & 60F]
° e ey —=n=10 °
P o " ©
P L o -=-1=100 g sof -5
g 40 2 ——n=1000 5 L5 T
5 o - =000 5 40f 2)
& ~ g A g g™ o wen=5000

! ~+=n=10(LRFIR) ol ~+-n=10(LRFIR)
204 n=100(LRFIR) 7 P n=100(LRFIR)
—#—n=1000(LRFIR) 20¢ 7 —%—n=1000(LRFIR)
‘ ‘ ‘ ‘ | ¢ n=5000(LRFIR) 1o o))) = n=5000(LRFIR)
% 30 a0 0 e 70 80 90 100 % 30 40 50 e 70 s 90 100
Percentage of nodes Percentage of nodes

Fig. 8 Effect of load on the index distribution with different nodes. a Corel b Caltech 101 Object

@ Springer

Multimed Tools Appl

Corel10000 Caltech 101 Object
100 ’ ; , _ 100 . . - - - . —
90 A 90+
7
80 s a 1 80
] Vi o H
5 70 z i’ 5 70 ’
2 g7t 2 2
& g Z
S 60 e 5 60 Z7
& 5ol LT % 5 et
;.3:’ 40 E 40 A
301/ - =-m=12k=5 3067 —=-m=10k=5
- ---m=12k=9 . -=-m=10k=10
20 —m=12k=14 20 ——m=10k=15
m=12k=19 weem=10k=20

40

50 60 70
Percentage of nodes

80 90 100

"%

30

50 60 70
Percentage of nodes

40

80 90 100

Fig. 9 Effect of load on the index distribution. a Corel b Caltech 101 Object

In Fig. 8, when the number of node ranges from 1000 to 5000, the load is more balanced than
other cases. However, for the Corel, when 7 is 10, the load of LFFIR is skewed and 40 % of nodes
stores around 60 % of indexes. The reason is that the number of nodes is so small that the interval
between nodes 7D becomes large. Therefore, some nodes store much more indexes than others.
Moreover, SHA-1 distributes the indexes to a large set of possible intervals of Chord. Compared
to LRFIR, the curves of LFFIR for both datasets appear to be much steadier, especially when n=
1000 and »=5000. It indicates that the load balancing of LFFIR is better than that of LRFIR.

Figure 9a shows the load balancing versus the number of buckets, when the number of nodes
in the network is 1000. As the figures reveal, when the number of buckets grows, the index
distribution is much balanced. Taking the Corel for example, the line of m=12, k=9 is much
smooth than others. In the above experiment, we reasonably choose k=9 for Corel, k=10 for
Caltech101 Object, respectively. That is because as the number of hash bits, £, increases, less
index messages are gathered into a cluster, then each node correspondingly stores fewer messages.
Similar conclusion can be drawn in the Caltech 101 Objects dataset, as shown in Fig. 9b. As
previously mentioned, the number of buckets has a larger impact on the network load.

Figure 10 shows load balancing in comparison to M-Chord. The M-Chord line growths
steadily comparing with LFFIR(m=12, k=9) for Corel and LFFIR (m=10, k=10) for Caltech
101, which implies the load of M-Chord is more balancing than LFFIR. The reason is that M-
Chord assigns a resource /D to an image, while some images share an index in LFFIR. Thus,
M-Chord can allocate indexes to more Chord nodes.

Corel

Percentage of nodes

Caltech 101 Object

Percentage of nodes

Fig. 10 Load under comparison with M-Chord a Corel b Caltech 101

@ Springer

100 = 100 e
P i /,~-" =
H -
90 0 90 2 a
g s/
Pl %
o - IS
80 S e
27 P
P 7 0w 70 v
Z 70 z P
E A ;-] oI
5 ~ “z i g
S 60 A o Z
g) * ¥ g) /
s - g 5ol]
5 e 5 7
5 50 il b+ B
= 0 & a0t Yl 1
d 7/ P
%0 g ~=LFFIR A
Ca
gl ~==M-Chord 30P" ¢ - —LFFIR
30 B s ===M-Chord
- 2 20 -
29 30 40 50 60 70 80 90 100 1% 30 40 50 60 70 80 90 100

Multimed Tools Appl

Corel10000 Catltech 101 Object
140 . .
SN m=2k=9 m=5 k=10
120 m=10k=10
100 m=15k=10
100} EEm=20k=10
o 80 @
g 5
T 60]
40 >0
20 R
0 N 0 R N \E
10 100 1000 5000 10 100 1000 5000
Number of nodes Number of nodes

Fig. 11 Network hops vs. hash tables No. a Corel b Caltech 101 Object

5.4 Network hops

The effect of network hops is depicted, as shown in Figs. 11 and 12. Network hops
are one of the most critical parameters in the distributed environment. The horizontal
axis represents the number of nodes varying from 10 to 5000. The vertical axis is the
lookup number of hops for processing a query image, when m varies from 2 to 17 for
Fig. 11a and from 5 to 20 for Fig. 11b. As shown, the number of lookup hops mainly
depends on the number of tables, m. As we expect, the lookup hops increase when
the number of tables increases for both datasets. In Fig. 1la, however, for a large
number of nodes, n=1000 and »=5000, the number of hops only has a slight
increase. The similar conclusions can be drawn in Fig. 11b.

As we expect, the number of lookup hops is independent on the number of buckets In
Fig. 12a, b, especially for n=100 and n=1000, the number of hops remains almost the same
when the number of buckets varies.

We can see that the lookup process of LFFIR does not need many network hops. So m=12,
k=9 for Corel and m=10, k=10 for Caltech101 Object, can be chosen respectively to
guarantee the best query accuracy while not incurring too many network hops.

Corel10000 Catltech 101 Object
100 80
Sm=12k=5 Sm=10k=5
- [m=12k=9] [m=10k=10
=12,k=14 60 m=10k=15]
Efm=12k=19 m=10k=20
60

Hops

- 10 100 . 1000 100 100 5000
Number of nodes Number of nodes

Fig. 12 Network hops vs. buckets No. a Corel b Caltech 101 Object

@ Springer

Multimed Tools Appl

Corel Caltech 101 Object
1000 1200 y T T
m=12k=9(LFFIR) m=10,k=10(LFFIR)
s00l EEEM-Chord 1000} EEEIM-Chord
i 800
600
g g 600
400}
400
200 F
200 : 5 200
0 = m N N 0 i [l B 2 3
10 100 1000 500 10 100 1000 5000
Number of nodes Number of nodes
Fig. 13 Lookup hops under comparison with M-Chord

Figure 13 shows the comparison of lookup hops. LFFIR responses the query with small
number hops in comparison with M-Chord. The reason is that LFFIR sends the query
to the most promising nodes. For example, m=12, 12 query messages are sent, and up
to 12 nodes visited for the query. A query can be answered in a small number of
lookup hops, e.g., 50-60. However, M-Chord transfers the kNN query to range
queries in each cluster. And the large range means to visit a lot of response node’s
neighbors. Although visiting the direct successor needs just only one hop, visiting the
predecessor many hops which increases the query cost.

6 Conclusions

We propose an multi-feature fusion framework to support CBIR in the distributed cloud
datacenter which stores a huge number of resources. LFFIR is implemented on the
DHT which provides efficient routing mechanisms. The ICS constructs the distributed
indexes based on fusion features and the property of p-stable hash functions.
Therefore, the indexes of content similar images are probabilistically clustered into
the same node. The QPS processes the query image and publishes the query messages
through overlay routing. The experiments show that our approach achieves high
accuracy with well balancing. Comparing with the image framework based on M-
Chord, it only needs a small numbers of network hops to response the query.

As future work, we plan to investigate the following issues. Firstly, some sensitive
information is being centralized into the cloud, so we may search over encrypted cloud data.
Secondly, image quality may not be very high, which can be improved by using the image
pretreatment technique before processing the query.

Acknowledgments This work was jointly supported by: (1) the National Basic Research Program of China
(No. 2013CB329102); (2) National Natural Science Foundation of China (No. 61471063, 61421061,
61372120,61271019, 61101119, 61121001); (3) the Key(Keygrant) Project of Chinese Ministry of
Education.(No. MCM20130310); (4) Beijing Municipal Natural Science Foundation (No. 4152039);
(5) Beijing Higher Education Young Elite Teacher Project (No. YETP0473); (6)Spanish Research
Council (No: TIN2013-46883); (7)Regional Government of Madrid (No: S2013/ICE-2894) cofunded
by FSE & FEDER.

@ Springer

Multimed Tools Appl

References

19.

20.

21.

22.

23.

24.

25.

. Androutsos P, Androutsos D, Venetsanopoulos AN (2006) A distributed fault-tolerant MPEG-7 retrieval

scheme based on small world theory. IEEE Trans Multimed 8(2):278-288

. Batko M, Falchi F, Lucchese C et al (2010) Building a web-scale image similarity search system[J].

Multimed Tools Appl 47(3):599—-629

. Bawa M, Manku G, Raghavan P (2003) SETS: search enhanced by topic segmentation. Proceedings of the

26th Annual International ACM SIGIR Conference (SIGIR’03), Toronto, Canada, 306-313

. Chen J, Hu C, Su C (2008) Scalable retrieval and mining with optimal peer-to-peer configuration. IEEE

Trans Multimed 10(2):209-220

. Crespo A, Garcia-Molina H (2002) Routing indices for peer-to-peer systems. Proceedings of the 22nd IEEE

International Conference on Distributed Computing Systems (ICDCS’02), Vienna, Austria, 23-32

. Datar M, Immorlica N, Indyk P, Mirrokni VS (2004) Locality-sensitive hashing scheme based on p-stable

distributions. Proceedings of the 20th Annual Symposium on Computational Geometry (SoCG’04), New
York, USA, 253-262

. Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas, influences, and trends of the new age. ACM

Comput Surv 40(2), Article 5

. Dikaiakos MD, Katsaros D, Mehra P, Pallis G, Vakali A (2009) Cloud computing: distributed internet

computing for IT and scientific research. IEEE Internet Comput 13(5):10-13

. Eisenhardt M, Muller W, Henrich A, Blank D, Allali SE (2006) Clustering-based source selection for

efficient image retrieval in peer-to-peer networks. Proceedings of the 8th IEEE International Symposium on
Multimedia (ISM ’06), Washington DC, USA, 823-830

. Falchi F, Gennaro C, Zezula P (2005) A content-addressable network for similarity search in metric spaces.

Proceedings of the 6th International Workshop on Databases, Information Systems and Peer-to-Peer
Computing (DBISP2P’05), Toronto, Canada, 79-92

. Forestiero A, Leonardi E, Mastroianni C, Meo M (2010) Self-chord: a bio-inspired P2P framework for self-

organizing distributed systems. IEEE/ACM Trans Netw 18(5):1651-1664

. Gaeta R, Sereno M (2011) Generalized probabilistic flooding in unstructured peer-to-peer networks. IEEE

Trans Parallel Distrib Syst 22(12):2055-2062

. Gnutella (2000) Gnutella website. http:/www.Gnutella.com
. Guo C, Lu G, Li D et al (2009) BCube: a high performance, server-centric network architecture for modular

data centers[J]. ACM SIGCOMM Comput Commun Rev 39(4):63-74

. Haghani P, Michel S, Aberer K (2009) Distributed similarity search in high dimensions using locality

sensitive hashing. Proceedings of the 12th International Conference on Extending Database Technology
(EDBT’09), Saint Petersburg, Russia, 744-755

. Indyk P, Motwani R (1998) Approximate nearest neighbors: towards removing the curse of dimensionality.

Proceedings of the 13th ACM Symposium on Theory of computing (STOC’98), Dallas, Texas, 604-613

. Jagadish HV, Ooi BC, Vu QH (2005) BATON: a balanced tree structure for peer-to-peer networks.

Proceedings of the 31st international conference on Very large data bases (VLDB’05), Trondheim,
Norway, 661-672

. Kalnis P, Ng WS, Ooi BC, Tan K (2004) Answering similarity queries in peer-to-peer networks. Inf Syst

31(1):57-72

King I, Ng CH, Sia KC (2004) Distributed content-based visual information retrieval system on peer-to-peer
networks. ACM Trans Inf Syst 22(3):477-501

Li F, Fergus R, Perona P (2007) Learning generative visual models from few training examples: an
incremental Bayesian approach tested on 101 object categories. Comput Vis Image Underst 106(1):59-70
Liao J, Wang J, Wu B, Wu W (2012) Toward a multi-plane framework of NGSON: a required guideline to
achieve pervasive services and efficient resource utilization. IEEE Commun Mag 50(1):90-97

Liao J, Yang D, Li T, Wang J, Qi Q, Zhu X (2014) A scalable approach for content based image retrieval in
cloud datacenter. Inf Syst Front 16(1):129-141

Liu G, Zhang L, Hon Y, Li Z, Yang J (2010) Image retrieval based on multi-texton histogram. Pattern
Recogn 43(7):2380-2389

Lv Q, Cao P, Cohen E, Li K, Shenker S (2002) Search and replication in unstructured peer-to-peer networks.
Proceedings of the 16th ACM Annual International Conference on Supercomputing (ICS’02), New York,
USA, 84-95

Novak D, Zezula P (2006) M-Chord: a scalable distributed similarity search structure. Proceedings of the
First International Conference on Scalable Information System (INFOSCALE’ 06), Hong Kong, China,
Article 19

@ Springer

http://www.gnutella.com/

Multimed Tools Appl

26. Peng C, Kim M, Zhang Z, Lei H (2012) VDN: virtual machine image distribution network for cloud data centers.
IEEE International Conference on Computer Communications (INFOCOM’12), Orlando, Florida, 181-189

27. Peng C, Ksim M, Zhang Z, Lei H (2012) VDN: virtual machine image distribution network for cloud data centers.
IEEE International Conference on Computer Communications (INFOCOM’12), Orlando, Florida, 181189

28. Ratnasamy S, Francis P, Handley M, Karp R, Shenker S (2001) Scalable content-addressable networks. The
2001 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM’01), San Diego, USA, 161-172

29. Sahin OD, Gulbeden A, Emekci F, Agrawal D, Abbadi AE (2005) PRISM: indexing multi-dimensional data
in p2p networks using reference vectors. Proceedings of the 13rd Annual ACM International Conference on
Multimedia, ACM Multimedia (MM’05), Singapore, 946-955

30. Snoek C,Worring M, Smeulders AWM (2005) Early versus late fusion in semantic video analysis.
Proceedings of the 13rd Annual ACM International Conference on Multimedia, ACM Multimedia
(MM’05), Singapore, 399-402

31. Sripanidkulchai K, Maggs BM, Zhang H (2003) Efficient content location using interest-based locality in
peer-to-peer systems. Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM’03), San Francisco

32. Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan H (2001) Chord: a scalable peer-to-peer lookup
service for internet applications. The 2001 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM’01), San Diego, USA, 149-160

33. Tang C, Xu Z, Dwarkadas S (2003) Peer-to-peer information retrieval using self-organizing semantic overlay
networks. The 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM’03), Karlsruhe, Germany, 175-186

34. Tian X, Jiao L, Liu X, Zhang X (2014) Feature integration of EODH and Color-SIFT: application to image
retrieval based on codebook. Signal Process Image Commun 29(4):530-545

35. Urdaneta G, Pierre G, Steen MV (2011) A survey of DHT security techniques[J]. ACM Comput Surv
(CSUR) 43(2):8

36. Vlachou A, Doulkeridis C, Kotidis Y (2012) Metric-based similarity search in unstructured peer-to-peer
systems. Trans Large Scale Data Knowl Centered Syst 5:28-48

37. Wang X, Zhang B, Yang H (2014) Content-based image retrieval by integrating color and texture features.
Multimed Tools Appl 68(3):545-569

38. Yang Z, Zhao BY, Xing Y et al (2010) AmazingStore: available, low-cost online storage service using cloudlets.
Proceedings of the 9th International Workshops on Peer-to-Peer Systems (IPTPS’10), San Jose, USA, 1-5

39. Zhang X, Shou L, Tan K, Chen G (2010) iDISQUE: tuning high-dimensional similarity queries in DHT
networks. Proceedings of the 15th International Conference on Database Systems for Advanced Applications
(DASFAA’10), Tsukuba, Japan, 19-33

40. Zhu Y, Hu Y (2007) Efficient semantic search on DHT overlays. J Parallel Distrib Comput 67(5):604-616

Jianxin Liao was born in 1965, obtained his PhD degree at University of Electronics Science and Technology of
China in 1996. He is presently a professor of Beijing University of Posts and Telecommunications. He has
published hundreds of papers in different journals and conferences. His research interests are mobile intelligent
network, broadband intelligent network and 3G core networks. He is the Specially-invited Professor of the
“Yangtse River Scholar Award Program” by the China Ministry of Education in 2009.

@ Springer

Multimed Tools Appl

Di Yang received the B.S. degree in computer science and technology from the Liaoning Normal University, in
2008 and the M.S. degree in computer software and theory from Liaoning Technical University, in 2011. She is
currently pursuing the Ph.D. degree in computer science and technology at Beijing University of Posts and
Telecommunications. Her research interest includes peer-to-peer network, information retrieval, image process-
ing and software defined network.

Tonghong Li obtained his Ph.D. degree from Beijing University of Posts and Telecommunications in 1999. He is
currently an assistant professor with the department of computer science, Technical University of Madrid, Spain.
His main research interests include resource management, distributed system, middleware, wireless networks,
and sensor networks.

@ Springer

Multimed Tools Appl

Qi Qi was born in 1982, obtained his Ph.D. degree from Beijing University of Posts and Telecommunications in
2010. Now she is an assistant professor in Beijing University of Posts and Telecommunications. Her research
interests include SIP protocol, communications software, Next Generation Network, Ubiquitous services, and
multimedia communication.

Jingyu Wang was born in 1978, obtained his Ph.D. degree from Beijing University of Posts and Telecommu-
nications in 2008. Now he is an associate professor in Beijing University of Posts and Telecommunications,
China. His research interests span broad aspects of performance evaluation for Internet and overlay network,
traffic engineering, image/video coding, multimedia communication over wireless network.

@ Springer

Multimed Tools Appl

~
-

9

-

———

1

\ 4

Haifeng Sun is a Ph.D. student from Beijing University of Posts and Telecommunications. His main research
interests include semantic system, information retrieval and data mining.

@ Springer

	Fusion feature for LSH-based image retrieval in a cloud datacenter
	Abstract
	Introduction
	Related work
	System overview
	DHT-based CBIR approach
	Features extraction and fusion
	Publishing LSH-based index messages
	Locality-preserving mapping
	Index construction service

	Distributed query processing
	Query processing

	Performance evaluation
	Datasets and system settings
	Query accuracy
	Load balancing
	Network hops

	Conclusions
	References

