
An RDMA Middleware for Asynchronous
Multi-stage Shuffling in Analytical Processing

Rui C. Gonçalves1(B), José Pereira1, and Ricardo Jiménez-Peris2

1 HASLab, INESC TEC & U. Minho, Braga, Portugal
{rgoncalves,jop}@di.uminho.pt

2 Univ. Politécnica de Madrid & LeanXcale, Madrid, Spain
rjimenez@leanxcale.com

Abstract. A key component in large scale distributed analytical
processing is shuffling, the distribution of data to multiple nodes such
that the computation can be done in parallel. In this paper we describe
the design and implementation of a communication middleware to sup-
port data shuffling for executing multi-stage analytical processing opera-
tions in parallel. The middleware relies on RDMA (Remote Direct Mem-
ory Access) to provide basic operations to asynchronously exchange data
among multiple machines. Experimental results show that the RDMA-
based middleware developed can provide a 75 % reduction of the costs of
communication operations on parallel analytical processing tasks, when
compared with a sockets middleware.

Keywords: Distributed databases · OLAP · Middleware · RDMA

1 Introduction

The proliferation of web platforms supporting user generated content and of
a variety of connected devices, together with the decreasing cost of storage,
lead to a significant growth on data being generated and collected every day.
This explosion of data brings new opportunities for businesses that overcome
the challenge of storing and processing it in a scalable and cost-effective way.
It has thus sparked the emergence of NoSQL database systems and processing
solutions based on the MapReduce [2] programming model as alternatives to the
traditional Relational Database Management Systems (RDBMS) for large scale
data processing.

Briefly, in a MapReduce job, a map function converts arbitrary input data to
key-value pairs. For instance, in the classical word count example, for each input
text file, map outputs each word found as a key and its number of occurrences as
the value. A reduce function computes an output value from all values attached
to the same key. For instance, in the word count example, reduce sums all values
for each key to obtain the global count for each word. Both these operations
can easily be executed in parallel across a large number of servers with mini-
mal coordination: Multiple mappers work on different input files, and multiple
reducers work on different keys.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Jelasity and E. Kalyvianaki (Eds.): DAIS 2016, LNCS 9687, pp. 61–74, 2016.
DOI: 10.1007/978-3-319-39577-7 5



62 R.C. Gonçalves et al.

The key element of a MapReduce implementation, which needs distributed
coordination, is the shuffling step between map and reduce operations. It gathers
all data elements with the same key on the same server such that they can
be processed together. In classical MapReduce, this is a synchronous step: All
map tasks have to finish before reduce tasks can be started. This impacts the
latency of MapReduce jobs, in particular as multiple map and reduce stages are
often needed to perform data processing operations. Therefore, it restricts the
usefulness of systems based on MapReduce to batch processing, even if, as in
Hive [15], they offer a high-level SQL-like interface.

There has thus been a growing demand for NoSQL solutions that combine
the scalability of MapReduce with the interactive performance of traditional
RDBMS for on-line analytical processing (OLAP). For instance, Impala [6] offers
the same interface as Hive but avoids MapReduce to improve interactive per-
formance. Again, a key element in these data processing systems is the ability
to perform shuffling efficiently over the network. In detail, the shuffling has to
be asynchronous, to allow successive data processing tasks to execute in paral-
lel, and multi-stage, to allow an arbitrarily long composition of individual tasks
in a complex data processing job. Being the component that involves distrib-
uted communication and synchronization, shuffling is the key component for the
performance and scalability of the system.

This paper presents an asynchronous and multi-stage shuffling implementa-
tion that exploits the Remote Direct Memory Access (RDMA) networking inter-
face to add analytical processing capabilities to an existing Distributed Query
Engine (DQE) [7]. The DQE provides a standard SQL interface and full trans-
actional support, while scaling to hundreds of nodes. Whereas the scalability for
on-line transactional processing (OLTP) workloads is obtained executing multi-
ple transactions (typically short lived) concurrently on multiple DQE instances,
for OLAP workloads it is also important to have multiple machines and DQE
instances computing a single query in parallel. That is, as OLAP queries have
longer response times, it is often worth considering intra-query parallelism to
reduce queries response time [8].

The parallel implementation of the DQE for OLAP queries follows the sin-
gle program multiple data (SPMD) [1] model, where multiple symmetric work-
ers (threads) on different DQE instances execute the same query, but each of
them deals with different portions of the data. The parallelization of stateful
operators requires shuffling rows, so that the same worker processes the related
rows. Shuffling is done using a communication middleware that provides all-to-all
asynchronous data transfers, which was initially implemented using non-blocking
Java sockets. In this paper we describe an RDMA-based implementation of the
middleware, which was developed as an alternative to reduce the communication
overheads associated with parallel execution of OLAP queries, and we discuss
aspects considered while redesigning the middleware to leverage from RDMA
technologies.

Our middleware implementation relies on the RDMA Verbs programming
interface, and uses one-sided write operations for data transfers, and send/receive



RDMA Middleware for Asynchronous Shuffling 63

operations for coordination messages. For improved performance, it makes heavy
use of pre-allocated and lock-free data structures to operate. Moreover, it uses
batching to make a more efficient use of network. Experimental results show that
our RDMA-based middleware implementation can provide a 75 % reduction on
communication costs, when compared with a sockets implementation.

The rest of this paper is structured as follows: In Sect. 2, we describe the
requirements for supporting shuffling and the functionality offered by RDMA
networking. Section 3 describes the proposed solution. Section 4 compares the
proposed solution to a sockets-based middleware and Sect. 5 contrasts it to alter-
native proposals. Finally, Sect. 6 concludes the paper.

2 Background

2.1 Shuffling

In the DQE, shuffle operators are used when parallelizing stateful operators to
redirect rows to a certain worker based on a hash-code (computed from the
attributes used as key by the stateful operator being parallelized). Shuffle oper-
ators are also used to redirect all results to the master worker at the end of the
query, or to broadcast rows from sub-queries.

The communication middleware provides efficient intra-query synchroniza-
tion and data exchange, and it is mainly used for exchanging rows in shuf-
fle operators. A push-based approach is followed. When processing a row that
should be handled by other worker, the sender immediately tries to transfer it.
Each receiver maintains shuffle queues (Fig. 1), which are used to asynchronously
receive the rows. The shuffle queues abstract a set of queues used by a worker
to receive rows from the other workers, and they contain an incoming and an
outgoing buffer per each other worker, which are used to temporarily store rows
being exchanged. That is, the rows are initially serialized to the appropriate out-
going buffer (on the sender side), and then the serialized data is transferred to
the matching incoming buffer of the receiver worker, using the communication
middleware. An optimization is made for the case where the receiver worker is
running on the same DQE instance of the sender. In those cases, the shared
session state is used to allow the sender to directly move the rows to the shuffle
queues of the receiver.

Multiple shuffle operators may be required by a parallel query plan, thus
the need for multi-stage shuffling. To reduce the memory cost associated to
buffers – which increases quadratically with the number of workers – there is
a single incoming and a single outgoing buffer shared by all shuffle operators
(multiplexing is used to logically separate data from multiple shuffle operators).

The communication middleware was initially implemented using Java sock-
ets. For this implementation, a communication end-point is created when ini-
tializing a worker, which means to start a server socket and bind it to the IP
address of the machine. Then a non-blocking socket channel is opened between
each pair of workers running on different DQE instances, and the associated
incoming/outgoing buffers are allocated.



64 R.C. Gonçalves et al.

DQE Instance

...

Worker

Worker

DQE Instance

...

Worker

Worker

DQE Instance

...

Worker

Worker

local 

in. 
out. 

in. 
out. 

...

... Linked list for exchanging
rows with local workers
(one per shuffle queues)

Pair of incoming/outgoing
buffers for exchanging

rows with remote workers 
(one per remote worker)

...

Network

Fig. 1. DQE architecture and shuffle queues structure.

When a row is requested by a shuffle operator, the operator starts by polling
its shuffle queues, where it may have received rows from other workers. The
polling process of shuffle queues comprises the following steps:

– Check if there is a row received from a worker from the same DQE instance.
– If no row is available:

• Read (copy) data available on socket channels to incoming buffers.
• Poll the incoming buffers for available rows for the current shuffle operator.

If a row is obtained, it is returned by the shuffle operator. However, polling
shuffle queues may return no rows. In that case, the shuffle operator obtains a
local row from its child task/operator (as defined in the query plan). The row
is hashed to determine the worker that should process it. If it is a row for the
current worker, it is returned by the shuffle operator. Otherwise it is sent to
the appropriate worker, which implies serializing the row to an outgoing buffer,
and writing the data available to the socket channel. As the shuffle operator still
does not have a row to return, it goes back to the polling process and it tries
again to obtain a row for itself. As long as the shuffle operator has local rows to
process from its child operator, it does not block polling the shuffle queues. After
processing all those rows, the worker blocks if polling the shuffle queues returns
no rows. It will poll the shuffle queues again as soon as new data is received. The
only other situation where the worker may block is when there is no free space
on an outgoing buffer when sending a row to a remote worker.

In summary, the push-based asynchronous shuffling approach followed by the
DQE requires the following key functionalities from the communication middle-
ware [5]: ability to send and queue rows on remote workers; ability to retrieve
the rows queued; ability to block a worker when there are no rows to process
(and to wake it up when new rows are received); and ability to block a worker
when a row cannot be immediately copied to a buffer (and to wake it up when
space becomes available).

2.2 RDMA Verbs

RDMA protocols [12] provide efficient and reliable mechanisms to read/write
data directly from the main memory of remote machines, without the involve-
ment of the remote machine CPU, enabling data transfers with lower latency



RDMA Middleware for Asynchronous Shuffling 65

and higher throughput. By providing applications with direct access to network
hardware, RDMA also bypasses typical complex network stacks and operating
system, reducing memory copies and CPU usage. The RDMA Verbs is the basic
programming interface to use RDMA protocols, and it supports data transfers
using either one-sided read/write operations, or two-sided send/receive opera-
tions. Additionally, there is the write with immediate data operation, which is a
one-sided write operation that also triggers a receive operation.

The API is asynchronous, that is, queue pairs – comprised of a send and a
receive queue – are used to queue operation requests for each connection. The
application may choose to receive completion events when requests are finished,
which are posted into a completion queue associated with the queue pair. To
avoid active polling, the application may request to be notified when a comple-
tion event is added to the completion queue (these notifications are sent to a
completion channel).

In our work, we used the jVerbs library [13], a Java implementation of the
RDMA Verbs interface available on the IBM JRE. Besides providing an RDMA
Verbs API for Java, jVerbs relies on modifications of the IBM JVM to reduce
memory copies.

3 Middleware Design and Implementation

In this section we first present the design of the RDMA communication mid-
dleware developed, and we then discuss in detail the implementation decisions
critical to the performance of our solution.

3.1 Design Overview

The RDMA middleware relies on one-sided RDMA write operations to transfer
rows’ data directly between Java memory buffers, and send/receive operations
for coordination.

When initializing workers for a parallel connection, on each DQE instance
running workers, an RDMA server connection is created and bound to the
machine IP address. Then all DQEs are connected with each other, which
requires (i) to pre-allocate and initialize memory buffers, queue pairs, completion
channel, and completion queue; (ii) to start a new thread (the network thread),
which will handle the work completion events; (iii) to start RDMA connections
with all other DQE instances; and (iv) to pre-allocate and initialize the data
structures needed to execute the network requests.

These steps are performed when opening a database connection, where it is
specified the level of parallelism – number of workers to use – for queries executed
using that connection. In this way, the overheads of preparing the network are
avoided during the execution of queries. On the other hand, the resources remain
allocated even if the connection is not being used to run queries.

As described before, when executing a shuffle operator, workers send and
receive rows asynchronously through shuffle queues, which use buffers to serialize



66 R.C. Gonçalves et al.

and temporarily store those rows until they are polled on the receiving side.
However, when using the RDMA middleware, the sender uses an RDMA write
request to transfer the serialized data from one of its outgoing buffers to a remote
incoming buffer. Then, after the network thread receives a work completion
event confirming the execution of the RDMA write request, the receiving side
is notified, and the tail of the local outgoing buffer is updated, to release the
space occupied by the data transferred during the request. The sending side
takes into account the tail position of the remote buffer to determine the free
space available. When there is no space available on the remote buffer, the data
transfer can only occur after the network thread receives a notification updating
the tail of the remote buffer (i.e., releasing space on the remote buffer), thus the
network thread assumes the task of posting the RDMA write request, and the
worker proceeds with its operation, unless the local outgoing buffer is also full.
In this case, instead of spilling data to disk – as it is done in some MapReduce
implementations, for example –, we chose to block the worker, until space is
released.

When workers want a new row to consume, they follow the polling process
described in Sect. 2.1. However, as now data is transferred using RDMA write
operations, some changes are required. Firstly, the workers do not have to copy
data from the channels to their incoming buffers, as the data is transferred
directly to those buffers. Moreover, as the data is transferred without the inter-
vention of the receiving side, the network thread uses the notifications previously
described to keep track of buffers with data available for each worker, and it
wakes up blocked workers when it receives notifications.

3.2 Implementation Decisions

Network and Worker Threads. We use a thread dedicated to track completion of
operations (the network thread). To reduce CPU consumption, this thread blocks
waiting for completion events, and it is in charge of operations that follow a com-
pletion event of a network operation. This includes to process the completion of
RDMA write requests (sending the needed notifications, and updating outgoing
buffer states), as well as processing received notifications (possibly waking up
blocked worker threads). As this thread blocks waiting for completion events, we
decided to not use this thread to post the RDMA write requests, as the requests
would not be posted until the network thread wakes up. Worker threads are
in charge of performing the RDMA write requests to transfer rows, with one
exception: In case there is an ongoing RDMA write request, the new request
is delayed until the previous one completes. As it is the network thread that
tracks the completion of the requests, it is also this thread that will post the
RDMA write requests in those cases. As after returning from the sending opera-
tion workers may want to reuse the memory space that contains the row to send,
the sending operation always serializes the row to the outgoing buffer (even if
it does not perform the RDMA write request). Therefore, if this buffer is full
the worker blocks. The alternative would imply to copy the row to a temporary
buffer, or to spill data to disk, as we mentioned previously. As typically there are



RDMA Middleware for Asynchronous Shuffling 67

many other threads to keep the system busy, we choose this option that avoids
wasting CPU time.

RDMA Connections. A single connection/queue pair is used per pair of
machines, which means that multiple workers share the same connection/queue
pair. In this way, if we have m machines with n workers each, we require m − 1
connections per machine. If we used a connection for each pair of workers, we
would require n × n × (m − 1) connections per machine (i.e., for each of the
n workers on a machine, there would be a connection to each of the n workers
on every other m− 1 machines). We followed this approach to reduce the needs
of on-chip memory of the network card, which can compromise the scalability of
the communications [3]. Regarding memory buffers, we use a single contiguous
memory region per pair of machines, which is later divided in multiple buffers,
to be used by the different pairs of workers.

Notifications. To detect the availability of new received data, we decided to use
send/receive requests to notify the receiving side. The main goal was to avoid
active polling on all incoming buffers, which results in scalability problems. As
receivers are notified when data is written/received, they can easily keep track of
the list of buffers with data available. An alternative would be to use an RDMA
write with immediate data, but this operation is not provided by the jVerbs API.
Moreover, the notifications are also used to notify the sending side that data was
read from a buffer, which is essential to determine when data can be transferred.
To reduce the number of read notifications, they are only sent after reading a
configurable amount of data (an approach similar to the one followed by [3]).
That is, the sender does not have knowledge of the released space immediately.
Although this could make workers block more often when sending rows, our
experiments showed that workers rarely block in these situations.

Batching. In the initial implementation, the middleware was prepared to trans-
fer data as soon as it was available, in order to reduce latency. However, due to
the small size of the rows being transferred, we noticed that this could result in
significant communication overheads, particularly when using an RDMA soft-
ware implementation such as Soft-iWARP [17]. Due to the asynchronous nature
of the DQE, the latency is not critical. Therefore, the middleware provides the
ability to define a minimum threshold of data, that is, the data transfer request
is delayed until a certain amount of data to transfer is available (or a flush
operation is performed). This threshold may be adjusted, namely to take into
account the network hardware characteristics (i.e., we can use lower thresholds
when using network hardware with support for RDMA). Moreover, notifications
are also sent in batches. That is, when performing actions that originate multiple
notifications, the notifications are initially queued, and at the end they are sent
in a batch.

Lock-free Pre-initialized Data-structures. For increased performance, the mid-
dleware makes use of lock-free data structures, allowing worker threads to oper-
ate without blocking, until they have no work to process. The network thread



68 R.C. Gonçalves et al.

blocks waiting for completion events, but the middleware is designed so that
worker threads are not prevented from progress in this case. The incoming and
outgoing buffers are implemented using circular buffers on top of direct byte
buffers (i.e., this memory is outside of the Java garbage-collected heap). These
circular buffers are designed to support a write and a read operation concur-
rently without using locks, to avoid contention when serializing rows. Moreover,
the main data structures needed are initialized during connection, and are reused
for all queries executed with the connection. To reduce overheads associated to
JNI serialization when jVerbs makes RDMA verbs calls to lower level libraries,
jVerbs provides stateful verbs methods (SVM), which cache the serialized state
of the call, enabling this state to be reused in later calls without additional seri-
alization overheads. By making use of this mechanism, and by initializing the
SVM objects during connection, we keep these overheads outside the execution
of queries.

RDMA Writes vs Send/Receive. We decided to use RDMA writes to trans-
fer data. Regarding performance, RDMA write requests usually provide better
latencies and lower CPU usage on the passive side [11]. Even though the latency
is not critical, the lower CPU usage is important to leave more resources for
the worker threads. Moreover, RDMA write requests also simplify the communi-
cation process, as a single connection is used to transfer data between multiple
pairs of buffers. That is, the receiver does not know in advance where the received
data should be placed. Whereas with RDMA write operations it is the sender
that determines where the data is placed on the receiving side, with send/re-
ceive operations this is determined by the receiver. Therefore, to use send/receive
requests the sender would need to tell the receiver in advance the buffer to use
to receive the data. The receiver would then post a receive request with the
appropriate buffer, and tell the sender it could send the actual data (or tell the
sender it cannot send data if there is no buffer space on the receiving side). This
increases the number of requests to transfer data, and it forces the data transfer
operations to be posted one at a time, to make sure that data is placed on the
right buffer on the receiving side, whereas our current solution allows for multi-
ple posted RDMA write requests pending completion. To avoid this, we would
have to either use a single buffer per pair of DQE instances (instead of a single
buffer per pair of workers), or an RDMA connection per pair of workers. The
former solution would impose contention among workers when serializing and
deserializing rows. The latter would increase the number of connections needed,
which would compromise scalability, as we discussed previously in this section.

4 Evaluation

To evaluate the solution developed we conducted performance experiments,
which we report in this section. First we compare the RDMA middleware with
the original sockets middleware in a synthetic benchmark, which simulates the
use of the middleware to execute queries, but that removes all the computation



RDMA Middleware for Asynchronous Shuffling 69

related with the actual query execution, leaving only the shuffle operators. Then
we compare both middleware implementations executing real analytical queries
with the DQE.

The evaluation was conducted using a cluster of 9 servers. All servers have
Intel Core i3 CPUs, with 2 physical cores (4 threads), 8GB of RAM, SATA HDD
(7200 rpm), and GigaBit Ethernet. As the servers do not have network hardware
supporting RDMA, we used Soft-iWARP [17].

4.1 Synthetic Benchmark

In this section we compare the performance of the middleware implementations
using an application that simulates the execution of shuffle operators in real
queries, but without operators that do the actual query computation. That is,
each worker thread of the application executes a “query plan” that essentially
contains two shuffle operators (see Fig. 2). The “rows” are integers generated
sequentially (node Int Generator on Fig. 2), and between the two shuffle oper-
ators a simple transformation is applied to the integers received from the previous
operator to make sure that most of them will be sent to a different worker in
the next shuffle operator.

For these experiments we used a setup with 4 servers running one application
process each, and another setup with 8 servers running one application process
each. The tests were conducted using IBM JRE 8.0-1.10. The size of the buffers
used by the communication middleware was set to 64 KB (the default value).
Each application process generates 5M integers, which are shuffled twice (i.e.,
the shuffle operators of each process handle 10M integers in total).

We measured the execution time with different numbers of workers on each
process, both using the sockets and the RDMA middleware. The execution times
(averages of 8 executions) are reported on Fig. 3. Considering the fastest times
for each middleware in the two setups tested, we can observe that the RDMA
middleware resulted in a reduction of around 75 % of the execution time.

We also used this synthetic application to illustrate the impact of batch-
ing multiple rows before transferring them, as described in Sect. 3.2. Figure 4

Int 
Generator

n := n * 3/2 n := n * 3/2 

Int 
Generator

Fig. 2. Plan used for the synthetic benchmark.



70 R.C. Gonçalves et al.

Fig. 3. Execution times of the synthetic application for the sockets and RDMA mid-
dleware, when varying the number of DQE instances and the number of workers.

Fig. 4. Execution times of the synthetic application with different thresholds for write
requests batching.

shows the execution times using different minimum thresholds for transferring
data, when using 4 processes and 8 processes (in both cases 2 worker threads
per process were used). As we can observe, when using the RDMA middleware
adjusting this threshold can lead to variations on the execution time higher than
25 %. With the used hardware we observed a good performance with a threshold
of 16 KB, which is the value we used in the other tests reported in this section.

4.2 Application Benchmark

We also compared the performance of both middleware implementations using
the DQE to run analytical queries. These tests were conducted using 3 analytical
queries, executed over a TPC-C database [16]. Listing 1.1 shows the queries used,
which expose different combinations of common operators of analytical queries.

For this experiment we used the following setups: 4 servers running DQE
instances and the key-value data store component (HBase), and 1 server run-
ning the remaining services required by the DQE; and 8 servers running DQE
instances and the key-value data store component, and 1 server running the
remaining services required by the DQE. The tests were conducted using HBase
0.98.6, running on Oracle JRE 1.7.0 80-b15, and the DQEs were running on IBM



RDMA Middleware for Asynchronous Shuffling 71

JRE 8.0-1.10. The size of the buffers used by the communication middleware was
set to 64 KB (the default value).

-- Query 1
select ol_o_id, ol_w_id, ol_d_id, sum(ol_amount) as revenue, o_entry_d

from order_line, orders, new_order, customer
where c_id = o_c_id and c_w_id = o_w_id and c_d_id = o_d_id

and no_w_id = o_w_id and no_d_id = o_d_id and no_o_id = o_id
and ol_w_id = o_w_id and ol_d_id = o_d_id and ol_o_id = o_id
and c_state like ’A%’ and o_entry_d > timestamp(’2013-07-01-00.00.00.000000’)

group by ol_o_id, ol_w_id, ol_d_id, o_entry_d
having sum(ol_amount) > 80000.00
order by revenue desc, o_entry_d;

-- Query 2
select 100.00 * sum(case when i_data like ’a%’ then ol_amount else 0 end) /

(1+sum(ol_amount)) as promo_revenue
from order_line, item
where ol_i_id = i_id

and ol_delivery_d >= timestamp(’2013-06-01 00:00:00.000’)
and ol_delivery_d < timestamp(’2013-08-01 00:00:00.000’);

-- Query 3
select ol_number, sum(ol_quantity) as sum_qty, sum(cast(ol_amount as decimal(10,2))) as

sum_amount, sum(ol_quantity) / count(*) as avg_qty, sum(ol_amount) / count(*) as
avg_amount, count(*) as count_order

from order_line
where ol_delivery_d > timestamp(’2013-07-01 00:00:00.000’)
group by ol_number order by sum(ol_quantity) desc;

Listing 1.1. Evaluation Queries.

We measured the execution time of the queries previously presented, running
both without parallelization and with parallelization (with different numbers of
workers), over TPC-C databases with a scale factor of either 15 (for the setup
with 4 + 1 servers) or 30 (for the setup with 8 + 1 servers). The parallel times
were obtained both for the sockets middleware and for the RDMA middleware.
For each different setup, the queries were run 5 times, and the average of the
last 4 runs was considered, to account for cache warm-ups.

Figure 5 shows the executions times obtained for the different setups. As we
can observe from the results obtained, when using 4 DQE instances, the RDMA
middleware resulted in improvements on the maximum speedup between 2.0 %
(from 5.97x to 6.09x, in Query 2) and 16.2 % (from 6.44x to 7.49x, in Query
3), when compared with the sockets middleware. When using 8 DQE instances,
the RDMA middleware resulted in improvements on the maximum speedups
between 6.1 % (from 13.52x to 14.35x, in Query 3) and 14.3 % (from 10.34x to
11.83x, in Query 1).

As it would be expectable, significant improvements were obtained with
Query 1, which is the query that involves more shuffle operators to be parallelized
(thus, more communications). That is, the RDMA middleware is particularly
important to the parallelization of more complex queries. On the other hand,
Query 2 obtained lower benefits from the RDMA middleware, as it performs less
communication. Load balancing issues affecting this query also contribute to the
lower benefits obtained from using the RDMA middleware.



72 R.C. Gonçalves et al.

Fig. 5. Execution times of the analytical queries for the sockets and RDMA middle-
ware, when varying the number of DQE instances and the number of workers.

5 Related Work

Different works explored previously the use of RDMA technologies (and the
RDMA Verbs interface) to improve performance of communications in paral-
lel/distributed systems. Liu et al. [9] proposed an implementation for MPI [4]
(the de facto standard for communication in the high-performance computing
field) based on RDMA writes. Similar to our approach, they use a pool of pre-
allocated buffers, and there is also a match between buffers on sender and receiver
sides, so that the state of the receiver buffer can be “predicted” on the sender
side. Whereas we use a single pair of matching circular buffers, they use a pool
of buffers organized as a ring. Moreover, they rely on active polling to detect
incoming data, which limits scalability. Therefore, they limit RDMA communi-
cation to sub-sets of processes, and use send/receive requests for the remaining
communications. Sur et al. [14] proposed a different approach. They use a ren-
dezvous protocol, where the transfer of data is first negotiated through send/re-
ceive requests, and then RDMA read requests are used to transfer data. This



RDMA Middleware for Asynchronous Shuffling 73

approach is not appropriate to our case, where we have multiple threads commu-
nicating concurrently through the same connection. We choose to use matching
buffers on sender and receiver, together with notifications of read (processed)
data on the receiver, to simplify the coordination between sender and receiver
side, which is particularly important to reduce contention when multiple threads
may try to send data concurrently (an issue not discussed by [14]).

RDMA was used to implement FaRM [3], a distributed computing platform
which exposes the memory of multiple machines of a cluster as a shared address
space. FaRM design has similarities with the solution we propose: It also relies
on circular buffers and RDMA write requests to transfer data, for example.
However, it uses active polling to detect received data, and RDMA writes to
notify the sender of data removed from the buffer by the receiver side. Moreover,
FaRM is designed for minimal latency, whereas in our case we take advantage
of the asynchronous nature of the application using the middleware to batch
multiple messages, increasing latency, but reducing communication overheads,
and improving the overall application performance.

In the recent years, RDMA was also explored to improve different components
of well-known software stacks for distributed computing. Wang et al. [18,19]
provide an alternative shuffling protocol for Hadoop implemented using RDMA,
which uses send/receive requests to request data, and then RDMA write requests
to transfer the data. Lu et al. [10] also used RDMA to improve the performance
of the Hadoop RPC communication.

6 Conclusions

In this paper we presented an RDMA-based communication middleware to
support asynchronous shuffling in parallel execution of analytical queries, dis-
cussing the alternatives considered and the insights acquired with its implemen-
tation. When compared with a previous sockets-based middleware implementa-
tion, experimental results show that our new RDMA implementation enables
a reduction of communication costs of 75 % on a synthetic benchmark, and a
reduction of as much as 14 % on the total execution time of analytical queries,
even when using a software implementation of the RDMA protocol, showing that
redesigning communications to follow an RDMA approach can provide consid-
erable benefits.

Acknowledgements. This research has been partially funded by the European Com-
mission under projects CoherentPaaS and LeanBigData (grants FP7-611068, FP7-
619606), the Madrid Regional Council, FSE and FEDER, project Cloud4BigData
(grant S2013TIC-2894), the Spanish Research Agency MICIN project BigDataPaaS
(grant TIN2013-46883), and the ERDF – European Regional Development Fund
through the Operational Programme for Competitiveness and Internationalisation –
COMPETE 2020 Programme and by National Funds through the FCT – Fundação
para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology)
within project POCI-01-0145-FEDER-006961.



74 R.C. Gonçalves et al.

References

1. Darema, F.: The SPMD model: past, present and future. In: Cotronis, Y., Dongarra,
J. (eds.) PVM/MPI 2001. LNCS, vol. 2131, p. 1. Springer, Heidelberg (2001)

2. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

3. Dragojević, A., Narayanan, D., Castro, M., Hodson, O.: FaRM: fast remote mem-
ory. In: USENIX Symposium on Networked Systems Design and Implementation,
pp. 401–414 (2014)

4. Forum, M.P.I.: MPI: A message-passing interface standard. University of Ten-
nessee, Technical report (1994)

5. Gonçalves, R.C., Pereira, J., Jimenez-Peris, R.: Design of an RDMA communica-
tion middleware for asynchronous shuffling in analytical processing. In: CLOSER
- CoherentPaaS/LeanBigData Projects Workshop (to appear)

6. Apache Impala project. http://impala.io
7. Jimenez-Peris, R., Patino-Martinez, M., Kemme, B., Brondino, I., Pereira, J.,

Vilaça, R., Cruz, F., Oliveira, R., Ahmad, Y.: CumuloNimbo: a cloud scalable
multi-tier SQL database. Data Eng. 38(1), 73–83 (2015)

8. Kossmann, D.: The state of the art in distributed query processing. ACM Comput.
Surv. 32(4), 422–469 (2000)

9. Liu, J., Wu, J., Panda, D.K.: High performance RDMA-based MPI implementation
over InfiniBand. Int. J. Parallel Program. 32(3), 167–198 (2004)

10. Lu, X., Islam, N.S., Wasi-Ur-Rahman, M., Jose, J., Subramoni, H., Wang, H.,
Panda, D.K.: High-performance design of Hadoop RPC with RDMA over Infini-
Band. In: International Conference on Parallel Processing, pp. 641–650 (2013)

11. MacArthur, P., Russell, R.D.: A performance study to guide RDMA programming
decisions. In: ACM International Conference on High Performance Computing and
Communication & IEEE International Conference on Embedded Software and Sys-
tems, pp. 778–785 (2012)

12. Mellanox Technologies: RDMA Aware Networks Programming User Manual (2015)
13. Stuedi, P., Metzler, B., Trivedi, A.: jVerbs: ultra-low latency for data center appli-

cations. In: 4th Annual Symposium on Cloud Computing, pp. 10:1–10:14 (2013)
14. Sur, S., Jin, H.W., Chai, L., Panda, D.K.: RDMA read based rendezvous protocol

for MPI over InfiniBand: design alternatives and benefits. In: ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pp. 32–39 (2006)

15. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H.,
Wyckoff, P., Murthy, R.: Hive: a warehousing solution over a map-reduce frame-
work. Proc. VLDB Endow. 2(2), 1626–1629 (2009)

16. Transaction Processing Performance Council: TPC Benchmark C Standard Spec-
ification, Revision 5.11 (2010)

17. Trivedi, A., Metzler, B., Stuedi, P.: A case for RDMA in clouds: turning supercom-
puter networking into commodity. In: Asia-Pacific Workshop on Systems (2011)

18. Wang, Y., Que, X., Yu, W., Goldenberg, D., Sehgal, D.: Hadoop acceleration
through network levitated merge. In: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 57:1–57:10 (2011)

19. Wang, Y., Xu, C., Li, X., Yu, W.: JVM-bypass for efficient Hadoop shuffling.
In: International Symposium on Parallel and Distributed Processing, pp. 569–578
(2013)

http://impala.io

	An RDMA Middleware for Asynchronous Multi-stage Shuffling in Analytical Processing
	1 Introduction
	2 Background
	2.1 Shuffling
	2.2 RDMA Verbs

	3 Middleware Design and Implementation
	3.1 Design Overview
	3.2 Implementation Decisions

	4 Evaluation
	4.1 Synthetic Benchmark
	4.2 Application Benchmark

	5 Related Work
	6 Conclusions
	References


