1

Exactly Once Interaction in a Multi-tier Architecture*

Bettina Kemmé, Ricardo Jiménez-PetisMarta Patifio-Martinez Jorge Salds

TMcGill University, Montreal, Canada, kemme@cs.mcgill.ca

Abstract

Multi-tier architectures are now the standard for
advanced information systems. Replication is
used to provide high-availability in such architec-
tures. Most existing approaches have focused on
replication within a single tier. For example there
exist various approaches to replicate CORBA or
J2EE based middle-tiers, or the database tier.
However, in order to provide a high-available so-
lution for the entire system, all tiers must be repli-
cated. In this paper we analyze what is needed to
couple two replicated tiers. Our focus is to ana-
lyze how to use independent replication solutions,
one for each tier, and adjust them as little as pos-
sible to provide a global solution.

Introduction and Background

*Universidad Politcnica de Madrid (UPM), Madrid, Spafnjmenez,mpating @fi.upm.es, jsalas@alumnos.upm.es

have to be handled in case of an AS replica crash. Only re-
cent solutions take such database access into account. In
regard to database replication, some recent approaches are
[2, 17, 6, 23, 1, 24, 7, 9, 25, 30, 21]. Again, these ap-
proaches do not consider that the client (namely the AS
server) might be replicated. Note that an alternative way
to achieve high availability is logging with fast restart of
failed components.

However, in order to attain high availability, all tiers
should be replicated. Providing a correct replication so-
lution when considering a single tier has already shown to
be non-trivial. Providing the same degree of correctness
when multiple tiers are replicated is even more challenging
[20, 10].

We first have to understand the relationship between AS
and DB. Typically, both maintain some state. The DB con-
tains all data that can be accessed by different users ¢(share
data) and that should survive client sessions. The AS main-
tains volatile data. For instance, the J2EE specification fo

Current information systems are often built using a multi-AS distinguishes between data that is only accessible by a
tier architecture. Clients connect to an application servesingle client during the client session (kept within statef
(also called middle-tier) which implements the applica-Session beans), and data cached from the DB that is ac-
tion semantics. The application server in turn accessegessible to all clients (kept within entity beans). There is
a database system (also called backend tier) to retrievpically no data that is shared between clients but is not
and update persistent data. Application server (AS) andersisted in the DB. Typically, for each client request, a
database (DB) together build the server-side system, whilgansaction is started, and all actions are performed withi
the client is external and usually an independent unit. Irfhe context of this transaction. If all actions are success-
this paper, we do not consider architectures where an A8l the transaction commits before a response is returned to
calls another AS or several DBs. The standard mechame user. Otherwise, the transaction aborts, all stategEhsan
nisms to provide high-availability for the server system ar performed so far are undone (typically both in the AS and
logging with fast restart of failed components, or replica-DB), and the client is notified accordingly. A transaction
tion. [4, 3] look at fault-tolerance across tiers via log- might abort because of some application semantics (e.g.,
ging. The idea of replication is that for both AS and not enough credit available). If now either the AS or the
DBS, there are several server replicas, and if one servd?B crashes, request execution is interrupted and the client

replica crashes others can take over.

Existing replicatsually receives a failure exception. The task of replarati

tion solutions, both in academia and an industry have fois to hide such failures from the client. Instead, repliati

cused on the replication of a single tier.

For instance should provide exactly-once execution despite any passibl

[8, 12,19, 22, 15, 14, 13, 31, 30, 26, 5, 18, 16] only look atfailures. That is, a client receives for each request submit
AS replication. Many of these approaches do not even conted exactly one response. This response might be an abort
sider that the AS accesses a database via transactions whiggtification that was caused by the application semantics

pin 23910601, by the European Commission under the Adagegiro

but no failure exception. Furthermore, the server has eithe

This work has been partially supported by the MDER-Programm executed and committed exactly one transaction on behalf
PSIIRI: Projet PSIIRI-016/ADAPT (Québec), by NSERC (CdapRg-

grant IST-2001-37126, and by the Spanish Research CoMEIC] un-
der grant TIN2004-07474-C02-0

of the client request or, in case of an abort notification, no

state changes on behalf of the request are reflected at the
server.

This approach has several challenges. All AS replicas have

, Application 1 | Application E Application Application | | . . .
; : to guarantee to commit the same transactions with the same
p Replica Replica ! Primary Seconday | |

: AS and DB changes despite the possibility of interleaved

: v execution_ of different cI_ient requests at different r_e@dic _

! o | But even if DB access is not interleaved (e.g., using a sin-
gle primary), guaranteeing the same DB changes at all sites

[
{
[

Server <+ Server ! Server [«—»| Server
{
1
{
{
1
{
{
{

A
]

(a) Coupling AS and DB 1-to-1 'b) Coupling Prit AS with DBs . opt
___________________ (b) Coupling Primary AS wi might be difficult if non-determinismiis involved (e.g., SQL
+ [Application Application | | statements contain time values). Furthermore, when an AS
; ::,;ﬁi; N ;j;ﬁj; i / DB replica pair recovers, the AS replica must assure that

the DB copy receives the current DB state. The DB copy
REEE N cannot help with this task because it is not even aware of
| replication. Hence, recovery is a challenging task.

; [] Fig. 1 (b) is an example of tightly couplétbrizontal
replication with a single primary AS. The AS primary is
connected to all DB copies and performs the necessary
updates on all these copies. At the time the AS primary
crashes, a given transaction might have committed at some
DB copies, be active at others, and/or has not even started at

In order to handle an AS or DB crash, both AS and DBsome. When an AS backup takes over as new AS primary,

should be replicated. The idea is that any state Chang‘?ﬁhas to make sure that such transaction eventually either

performed by a transaction are known at all replicas be_'?ommits or aborts at all DB copies. One solution is to per-

fore the response is returned to the client. In this case, ify) 5| pB updates within a single distributed transaction
a repllce_l fails, the state changes of successfully execut at terminates with a 2-phase commit protocol (2PC). If
transactions are not lost. _We see wo ways to perforrr?Jluring the 2PC the AS primary informs the AS backups in
replication across tiers. Aghtly coupled approach ha_s which phase a transaction is (e.g., before prepare, ater pr
one global replication algorithm that coordinates replica pare, etc.), the new AS primary can commit or abort any
tion within and across tiers. The algorithm is deve|0pedoutstanding transactions appropriately [15]. Howeve€, 2P

with the awareness that both tiers are replicated. In CONg oy time consuming. Since the 2PC was only introduced
trast, anoseI_y coupled approach ta_lkes two existing repli- for replication purposes this solution very expensive 0Als
cation algorithms, one for each tier, plugs them togethepp recovery is again a challenge

and adjusts them such that they work correctly together. A loosely coupled integration approach is shown in

For simplicity, we only look at primary/backup ap- Fig. 1(c). Since so many solutions exist for replication of

proaches. ”EﬁCh client ha? z;_pn:pary Ai rep:j'cah\’\’h'Chthe individual tiers the idea is to simply couple any repli-
executes all the requests of this client and sends the stafgyion solution for one tier with a replication solution for

changes to the backup replicas. When the primary fails, %he other tier. Assume the replication solution for the AS

b"’?c"“p takes over as NEw primary for this clientsiAgle g guarantees exactly-once execution under the assump-
primary a_pproach requires all clients to connect to the SaMGion that AS replicas might crash but the DB to be accessed
primary, in amultiple primary approach each replica is pri- g ejiaple. Further assume the replication solution fer th
mary for some clients and.backup for the other primaries. pg yjar expects a non-replicated client and guarantees that
Fig. 1 (a) and (b) show tightly coupled approaches. Onlygach transaction either commits or aborts at all replicas.
the AS is responsible to coordinate replication. We use the:ina|ly assume that the DB provides an interface such that
term DB copies instead of replicas to express that the DBs cjients are actually not aware that they are connected to
does not actively control replication. a replicated DB but view it as a single, reliable DB. The
Fig. 1 (a) presents a tightly coupleertical replication question is whether plugging these two replicated tiers to-
approach. Each AS replica is connected to one DB copygether without any further actions on either of the tiers re-
and each AS replica must make sure that its DB copy cong|ly provides exactly-once execution across both tierkén t
tains the same updates as the other DB copies. That meanfresence of AS and DB crashes.
the AS primary of a client has to send not only all state | the following, we analyze this issue in detail. We
changes within the AS to the AS backups but also enougfyke existing replication solutions for the two tiers, and
information so that the AS backups can update their DBynalyze which failure cases are handled correctly and for
copies correspondingly. Within J2EE, if all DB access is\yhich cases changes or enhancements have to be made to
done via entity beans (no SQL statements within sessiogpe or hoth of the replication algorithms in order to provide
beans), then this can be achieved by sending both changggyrectness across the entire server system. We first look at

on session and entity beans to AS backups since the eingle primary approaches, and then discuss the challenges
tity beans reflect all DB changes. Otherwise, SQL stateyssociated with multiple primary solutions.
ments might have to be re-executed at the AS backups. If

either an AS replica or a DB copy fail, the correspc_)nding 1J2EE AS replication with a non-replicated DB is simplercsitthe
DB copy (resp. AS replica) has to be forced to fail, t00. concurrency control of the central DB handles all accestanes! data.

(c) Independent Replication

Figure 1: Replication Architectures

2 Application Server Replication after sending:p, but before committing,. at the DB, ¢,

))) aborts.NV P checks in the DB but does not find the marker,
Our example of a single primary AS approach is taken fromyepce ignores the state changes and response foupd in
[29]. Other approaches use similar techniques [15, 13]rhe CRA resubmits and it is executed as a new request.
The approach is for J2EE architectures, assumes a reliabl) i t fails after committingt, but before returning the re-
centralized database and reliable communication. An A ponseN P finds the marker, applies the state changes on
replica might crash. If it was connected to the DB and hadpe session beans, and keeps the respansaVhen CRA
an active transaction at the DB (no commit submitted yet)resypmits:, NP immediately returnsp,. r is not again
the DB aborts this transaction upon connection loss. Fogyecuted. (4) If it fails after returningp, to the client,
space reasons we bring a simplified version that does nQlommitted, N P has the state changes on beans, and the

consider application induced aborts. CRA does not resubmit providing exactly-once.
The replication algorithm has a client, primary, backup

and failover part. At the client, a client replication algo-
rithm (CRA) intercepts all client requests, tags them with
an identifier and submits them to the AS primary (after per-Commercial databases have provided high-availability so-
forming replica discovery). If the CRA detects the failure lutions for a long time [11]. However, since the documen-
of the primary, it reconnects to the new primary. Further-tation available to us is not very precise, the following de-
more, it resubmits the last request with the same identifiescribes our suggestion of a highly-available solution with
if the response was still outstanding. In J2EE, upon receiva single DB primary and one DB backup (adjusted from
ing a request, the AS server first initiates a transaction an{21]).
then calls the session bean associated with this request. Th All communication with the DB is via the JDBC driver
session bean might call other session or entity beans. Eagitovided by the DB. The JDBC driver runs in the context
of these beans might also access the DB. The primary replef the application. Upon a connection request from the
cation algorithm (PRA) intercepts transaction initiation application, the JDBC driver connects to the DB primary
associate the request with the transaction. It intercégts t (address can be read from a configuration file). The appli-
calls to beans in order to capture the state changes. Wheration submits transaction commands and SQL statements
it intercepts the commit request, it sends a checkpoint conthrough the JDBC driver to the DB primary where they are
taining the state of all changed session beans, the requestecuted. Upon the commit request from the application,
identifier and the client response to the AS backups. Adthe DB primary propagates all changes performed by the
ditionally, a marker containing the request identifier is in transaction in form of a writeset to the backup. It waits un-
serted into the DB as part of the transaction. Backups contl the backup confirms the reception of the writeset. Then
firm the reception of the checkpoint. Then, the PRA for-it commits the transaction and returns the ok to the appli-
wards the commit to the DB, and the response is returnedation. Writesets are sent in FIFO order, and the backup
to the client. For each session bean, backups only keep tregpplies the writesets in the order it receives it.
state of the bean as transmitted in the last two checkpoints If the DB primary crashes the JDBC driver looses its
that contain the bean. If the primary fails, one backup isconnections. The driver automatically reconnects to the
elected as new primaryy P. For each client, NP per- packup which becomes the new primary. At the time of
forms the following failover steps. Let with associated crash a connection might have been in one of the following
transactiort, be the last request af for which NP re- states. (1) No transaction was active on the connection. In
ceived a checkpointp,.. NP checks whethet, commit- this case, failover is completely transparent. (2) A transa
ted at the DB by looking for the marker in the DB. If it tion T was active and the application has not yet submitted
exists,t, committed. Otherwise, it aborted due to the crashthe commit request. In this case, the backup does not know
of the old primary.V P does not perform checks for earlier about the existence ¢f. Hence,T is lost. The JDBC
requests of because each new checkpointis an implicit ac-driver returns an appropriate exception to the application
knowledgement that previous transactions ebmmitted. But the connection is not declared lost, and the application
Also, if ¢, committed,NV P keeps the response, found can restarf’. (3) A transactiori’ was active and the appli-
in cp,. N P sets the state of each session bietmthe state cation already submitted the commit request, but it did not
found in the last checkpoirp,. containingb and transac- receive the commit confirmation from the old DB primary
tion ¢t,» committed. Then)N P starts the PRA algorithm. before its crash. In this case, the backup (a) might have
If the CRA did not receive a response for the last requesteceived and applied’s writeset and committed’, or (b)
r, it resubmits it toN P. Either NP has storedp, and it did not receiveT’s writeset before the crash. Hence, it
immediately returns it or it reexecutedike a new request. does not know about the existence™®f and7T must be

To see why this leads to exactly-once execution, we carconsidered aborted as under case (2).
distinguish the following timepoints at which the AS pri- Let's have a closer look at case 3. Generally, if a non-
mary can crash. (1) If it fails before sending the checkpointeplicated DB crashes after a commit request but before re-
cpr, then the corresponding transactignaborts, and the turning the ok, the application does not know the outcome
new primaryN P has no information about The CRAre- of the transaction. With replication, however, we can do
submitsr and it is executed as a new request. (2) If it fails better. When a new transaction starts at the DB primary,

3 Database Server Replication

Client 4 AS/DB Integration

CRA Fig. 2 shows how the algorithms of Sections 2 and 3 are
_____ L coupled. We can distinguish different failure cases.

AS Primary |—p| AS Backup
JDBC dr. JDBC dr. 4.1 DB primary fails, AS primary does not fail

— We look at the state of each connection between AS pri-
— —a mary and DB primary at the time the DB primary crashes.
5 ‘—’ If no transaction was active, the AS primary does not
' even notice that the driver reconnects to the DB backup.
If a transactiort,. triggered by client requestwas active
Figure 2: Loose Coupling of single primary AS and DB but the AS primary had not yet submitted the commit, the
JDBC driver returns a failure exception and the AS primary
knows that, aborteds, might already have changed some
state (beans) at the AS primary leading to inconsistency.
the DB primary assigns a unique transaction identifier andrhe task of the AS primary is to resolve this inconsistency
returns it to the JDBC driver. Furthermore, the identifier isand hide the DB crash from the client, i.e., provide exactly-
forwarded to the backup together with the writeset. If theonce execution for despite the DB primary crash. This
DB primary crashes before returning the ok for a committask is actually quite simple. The AS primary has to undo
request, the JDBC driver connects to the backup and inthe state changes on the beans executed on behalf of
quires about the commit of the in-doubt transaction (usinglrhen, it simply has to restart the executionrohitiating
the transaction identifier). If the backup did not receive th a new transaction. The JDBC driver has already connected
writeset before the crash (case 3b), it does not recogreze tho the DB backup which is now the new DB primary. The
identifier and informs the JDBC driver accordingly. The AS primary is not even aware of this reconnection. Reexe-
JDBC driver returns the same exception to the applicatiortuting the client request is fine since all effects of the first
as in case 2. If the backup received the writeset (case 3agxecution have been undone at the AS and the DB, and no
it recognizes the identifier, and returns the commit confir-response has yet been returned to the client.
mation to the JDBC which informs the application. In this |n the third case the DB primary fails after the AS pri-
case, failover is transparent. Garbage collection is quitenary submitted the commit request ferbut before the ok
simple because for each connection the JDBC driver mighfvas returned. In this case, the JDBC driver detects whether
ask only for the outcome of the last transaction. the DB backup committed, or not. Accordingly, it re-
turns a commit confirmation or exception to the AS primary
One has to be aware that, due to the asynchrony in thécase 3 of Section 3). In case of commit, the AS primary is
system, the backup might receive the inquiry about a transaot even aware of the DB failover and returns the response
action from a driver and after that it receives the writesetto its client as usual. In case of an exception it should be-
for the transaction (the primary had sent the writeset lgeforhave as above. It should undo the state changes on beans
the crash but the backup had not yet retrieved it from theperformed byt,. and reexecute. There is one more issue.
communication channel). In order to handle this correctlySince the AS primary first transfers the checkpejmt for
the backup does notimmediately return to the JDBC driver- to the AS backups and then submits the commit to the
if its does not find the transaction identifier. Instead, be-DB, the AS backups havep, containing the changes of
fore allowing any JDBC requests, it switches to failoveraborted transactioty.. There are now two cases. Firstly,
and first applies and commits all outstanding writesets thathe AS primary successfully reexecuteand sends a new
were successfuly transferred to the backup before the pricheckpoint forr to the AS backups. In this case, the AS
mary’s crash. Only then, it responds to JDBC requests. backups should discard the old, invalid checkpoint. Sec-
ondly, the AS primary might crash during reexecution be-
The approach above is actually quite similar to the com{fore sending a new checkpoint. In this case, the AS backup
bination of CRA/PRA algorithm for AS replication where that takes over as new AS primary checks for the marker
the JDBC driver takes over the task of CRA. The main(corresponding to the old checkpoint) but will not find it in
difference is that in AS replication, each request was exthe DB, and discard the checkpoint. That is, in any case,
ecuted in an individual transaction that started at the ASthe old invalid checkpoint is ignored.
With this, it is easy to provide exactly-once, and failover In summary, little has to be done in case of the crash of
is completely transparent. In contrast, in the DB environ-the DB primary in order to correctly couple the two replica-
ment, the application starts and ends a transaction, and setion algorithms. The only action that has to be performed is
eral requests can be embedded in this transaction. Hencine following: whenever the AS primary receives a failure
if the primary crashes in the middle of executing the trans-exception from the JDBC driver for a transactigrit has
action, the application receives a failure exception. ldenc to abortt at the AS level, and restart the execution of the
execution is actually at-most once. corresponding client request.

4.2 DB primary doesnot fail, AS primary fails 5 Multiple Primary Approaches

When the AS primary fails its connections to the DB pri- Recall that with multiple primaries, each replica can be pri

mary are lost. The DB primary aborts each active transacMa"y of some clients and backup for the other primaries.
tion for which it did not receive the commit request before , i ,

the crash. This is the same behavior as that of a centralizetil Multiple ASPrimaries

DB system. At AS failover, the new AS primary connects Extending above single primary AS algorithm to allow for
to the DB primary and checks for the markers for the lastmultiple primaries is straightforward as long as client-ses
checkpoints it received from the old AS primary. Since it sions are sticky (a client always interacts with the same AS
is connected to the same DB replica as the old AS primaryeplica during the lifetime of a session unless the AS replic
was, it will read the same information as in a centralizedcrashes), and as long as access to shared data is synchro-
DB system. As a result, nothing has to be done in case ofized via the DB tief. Some load balancing mechanism is
the crash of the AS primary in order to correctly couple theneeded to assign new clients to one of the AS replicas but
two replication algorithms. The failover actions of the AS the basics of the replication algorithm can remain the same.

replication algorithm of Section 2 are correct, whether theCoupIing with a single DB primary We can use the

AS is connected to a reliable centralized DB system or to 3ai : : : :
) X X ailover mechanism of the single AS primary solution pre-
replicated DB based on the algorithm of Section 3. g b y P

sented in Section 4 without any changes. If any of the AS
replicas fails, only the clients for which this AS replicawva

43 Both DB and AS primariesfail primary must be failed over to another AS replica.

Crash at thesametime Thisis possible if DB and AS pri- 52 Multiple DB Primaries

maries run on the same machine, and the machine crash@dany recent systems [17, 23, 27, 24, 30, 21] allow an ap-
In this case the JDBC driver of the new AS primary con-plication to connect to any DB replica which executes the
nects to the new DB primary. Nevertheless, failover can beransaction locally and at commit time multicasts the write
performed in exactly the same way. There is only one issueset to the other DB replicas. Since transactions on differ-
The new DB primary may not execute any requests froment DB replicas might access the same data, conflicts must
the new AS primary before it has applied and committednow be detected across the system. A typical solution is to
all writesets it has received from the old DB primary, i.e., use the primitives of a group communication system (GCS)
before failover is completed. Otherwise, the new AS pri-[28]. The replicas build a group and writesets are multi-
mary could check for a marker for a requeshot find it, cast such that all group members receive the writesets in
and only after that the new DB primary processes the writethe same total order. If two transactions are concurrent and
set of the corresponding transactigrand commitg,.. In conflict then the one whose writeset is delivered later must
this case, the new AS primary would discafsicheckpoint abort at all replicas. There exist many solutions to detect
and reexecute leading to a new transactiagp althought,, such conflicts using locking, optimistic validation, snap-
already committed at the DB. shots, etc. GCS also detect the crash of group members

Crash at different times The interesting case is if the As nd inform surviving members with a view change mes-
primary first fails, the new AS primary performs failover, S2g€. Writesets are usually multicast with a uniform reli-
and while checking for markers in the DB primary, the DB abIe_dehvery guaranteeing that if one DB rgpllc_a receives
primary crashes. Checking for a marker is a simple transac® Writeset each other replica also receives it or is removed
tion. If the DB primary fails in the middle of execution, the oM the group. o .
JDBC driver returns a failure exception to the new AS pri- Failover after the cras.h of a DB “?p"ca IS propos_ed n
mary. The new AS primary can simply resubmit the query,[zl] and nearly as described in Section 3. The replicated

and the JDBC driver redirects it to the new DB primary DB hgsdone fixeg _lp multliqast addr((je_ss. To connect the
where it will be answered once the new DB primary haseri('tendcei JDBC r|v?r mur':lcasts abl |sco;]/er)glmezsdqge tol
processed all writesets from the old DB primary. this address. DB replicas that are able to handle additiona

workload respond and the driver connects to one of them.
Let's denote it withdb. If db crashes, the JDBC driver re-
connects to another DB replic&’. Only crash case 3 of
Section 3 where the commit for a transactiowas sub-

The discussion above shows that with the two particular AgNitted butdb crashes before returning an answer must be
and DB replication algorithms, the coupling is extremely handled slightly different than in Section 3. Due to the
simple. There is only one slight modification to the AS asynchrony of message delivery, the JDBC driver might in-
replication algorithm. Since the failure of the DB primary quire about the commit ofatdl’, and only afterwardgb’

is not completely transparent (the application receiviés fa receivest’s writeset. In order to handle this correctls

ure exceptions for any active transaction), the AS mightdentifier contains information thatwas executed afb.
have to reexecute a request if the DB primary fails. NO 2transactions on different AS replicas may access sharedvitaen-
other changes have to be performed. tity beans but access is synchronized with the DB before dbmm

4.4 Summary

Then,db’ waits until the GCS informs it about the crash of ¢,’s commit request or not. In the first case, it had either
db. According to properties of the GC&’ can be surethat committed:,. or aborted due to conflict. In the second case,
it either receives's writeset before the view change remov- it has aborted, due to the crash of the AS primary. Hence,

ing db (and then, tells the JDBC driver about the outcome) it returns the corresponding outcome to the driver which re-

or not at all (and then, returns a failure exception). turns it toN P. In case of commitN P applies the state in
Coupling with a single AS primary Assume the AS pri- cp- and keeps track of the response, otherwise it discards
mary is connected to DB replicé. cp, and restarts execution efwhen the client resubmits.

If neither the AS primary noib fail, then the only dif- T @b" # db, thendd’ can det/ect by looking &f. thatt, was
ference to Section 4 is that a transactipmight now abort ~ °riginally executed aib. db’ knows that the driver would
at the DB tier at commit time because of a conflict. The®nly send a commitinquiry of a transaction executedion
AS primary can hide such abort could from the AS clientif db crashgd. Hence, it yva|ts until it has received from the
by undoing the AS state changestofand reexecuting GCSt,’s writeset or the view change message excluding

as done in Section 4.1 when the transaction aborts due tHE°M the group. In the first case, it returns a commit/abort
crash of the DB primary. answer depending on conflicts. In the second case, it re-

If the AS primary does not fail bufb fails, the AS pri- turns a failure exception. The driver forwards this decisio

: X . : to N P which handlegp, accordingly.
mary might receive an abort or failure exception for a trans With this mechanism, there is actually no need for the

actiont,. As in Section 4.1, the AS primary abotjsat the marker mechanism. Instead of looking for the marker,

AS level and reexecutes . .))
: . _ the new AS primary simply submits the commit request
Ifthe AS primary fails and the new AS primary Connects o, e the connection object copy. It either receives the out-
again todb, the situation is as in Section 4.2. come of the transaction (commit/abort) or a failure excep-
_The only really interesting case is if the AS primary tion. Hence, this extended functionality of the DB repli-
fails, and the new AS primar{/ P connects to DB replica cation algorithm — allowing a resubmission of a commit
db’ # db (this might happen due because of load-balancingequest (with idempotent characteristics) — provides-addi
issues or becaus# also fails). VP checks for markers in - tional functionality over a centralized system. As a result
db'. These are simple read only transactions. However, Wgne AS replication algorithm can be simplified avoiding to

have again the problem of asynchrony. Althoughmight insert a marker for each transaction.
have received,’s writeset it might still execute it while

N P checks forr's marker. HenceN P will not find the
marker butt,. later commits. Conceptually, the problem is
similar to the JDBC driver inquiring about the commit of a This paper analyzes various approaches for replicatidm bot
transaction but the DB replica might not yet have processedt AS and DB tier. The main focus is to combine typical
the writeset. The difference is that the JDBC driver is partexisting replication solutions, developed for the replima
of the DB replication system. Hence, coordination is sim-of one tier, to provide a replication solution for the entire
pler. Whendb' receives an inquiry from the JDBC driver multi-tier architecture. We show that only minor changes
for a transaction that was executed di it knows it has need to be performed to the existing solutions in order to
to wait until it either receives the writeset or a view changeprovide exactly-once execution across the entire system.
message from the GCS. However, whenMhg looks fora One main issue is that the replicated AS tier should hide
marker, this is a completely new, local transaction, @iid DB crashes from its own clients. This is easy to achieve.
cannot know that this transaction actually inquires abpout The second main issue is for the AS tier to detect whether a
In order to allowN P to connect to any DB replicdy’ ~ 9iven transaction committed at the DB tier in the presence
we suggest to extend both the AS and DB replication soof crashes of AS and/or DB replicas. A transparent solution
lutions slightly. Firstly, we make a JDBC connection ob- iS €mbedded in a replication aware JDBC driver.
ject a “state” object which keeps track of the last transac-
tion ¢, associated with the connection,’s identifier im- References
plicitly contains the identifier of the DB replica it is exe-
cuted on (e.g.db). Secondly, we make the submission o
the commit request over a given connection to the repli-

cated DB an idempotent operation. We show shortly how back-end databases of dynamic content web sites. In
lted DB a P P - norty ACM/IFIP/USENIX Int. Middleware Conf., 2003.
this is achieved. Furthermore, the new AS primafy

has to perform the following actions at failover. Instead [2] T. Anderson, Y. Breitbart, H. F. Korth, and A. Wool.

6 Conclusions

f [1] C. Amza, A. L. Cox, and W. Zwaenepoel. Dis-
tributed versioning: Consistent replication for scaling

of checking for the marker of for the last checkpointp, Replication, consistency, and practicality: Are these
of a client, N P submits the commit request for using mutually exclusive? 1I181GMOD Int. Conf. on Man-
the connection object found irp,.. At this timepoint, the agement of Data, 1998.

connection object is not really connected to any DB replica.

Hence, it connects to any DB replidd’ and inquires about [3] R. Barga, S. Chen, and D. Lomet. Improving log-
the commit oft,.. Assume first thatit’ = db. db, before ging and recovery performance in phoenix/app. In
the old AS primary crashed might have already received Int. Conf. on Data Engineering (ICDE), 2004.

[4] R. Barga, D. Lomet, and G. Weikum. Recovery guar-[18] IBM. WebSphere 6 Application Server Network De-

[5]

[6] K. Bohm, T. Grabs, U. Réhm, and H.-J. Schek. [20]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

antees for general multi-tier applications.ht. Conf.
on Data Engineering (ICDE), 2002.

ployment, 2005.

[19] M.-O. Killijian and J. C. Fabre. Implementing a re-

BEA Systems. WebLogic Server 7.0. Programming
WebL ogic Enterprise JavaBeans, 2005.

Evaluating the coordination overhead of synchronous
replica maintenance. IBuro-Par, 2000.

E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-
JDBC: flexible database clustering middleware.
USENIX Annual Technical Conference, FREENIX
Track, 2004.

M. Cukier, J.. Ren, C. Sabnis, D. Henke, J. Pistole,

W. H. Sanders, D. E. Bakken, M. E. Berman, D. A. [22

Karr, and R. E Schantz. AQUA: an adaptive architec-
ture that provides dependable distributed objects. In
Symp. on Reliable Distributed Systems (SRDS), 1998.

K. Daudjee and K. Salem. Lazy database replication[23]

with ordering guarantees. Int. Conf. on Data Engi-
neering (ICDE), 2004.

E. Dekel and G. Goft. ITRA: Inter-tier relationship
architecture for end-to-end QoShe Journal of Su-
percomputing, 28, 2004.

S. Drake, W. Hu, D. M. Mclnnis, M. Skold, A. Srivas-
tava, L. Thalmann, M. Tikkanen, @. Torbjgrnsen, and
A. Wolski. Architecture of highly available databases.
In Int. Service Availability Symposium (1SAS), 2004.

P. Felber, R. Guerraoui, and A. Schiper. Repli-
cation of CORBA objects. In S. Shrivastava and
S. Krakowiak, editorsAdvances in Distributed Sys-
tems. LNCS 1752, Springer, 2000.

P. Felber and P. Narasimhan. Reconciling replica-
tion and transactions for the end-to-end reliability of
CORBA applications. Innt. Symp. on Distributed
Objects and Applications (DOA), 2002.

S. Frglund and R. Guerraoui. A pragmatic implemen-
tation of e-transactions. 18ymp. on Reliable Dis-
tributed Systems (SRDS), Nuirnberg, Germany, 2000.

S. Frglund and R. Guerraoui. e-transactions: End-
to-end reliability for three-tier architectureslEEE
Transactions on Software Engineering (TSE), 28(4),

2002.

The JBoss Group.
http://www.jboss.org.

JBoss application server.

J. Holliday, D. Agrawal, and A. El Abbadi. The per-
formance of database replication with group commu-
nication. Inint. Symp. on Fault-Tolerant Computing
(FTCS), 1999.

In[21]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

flective fault-tolerant CORBA system. [8mp. on
Reliable Distributed Systems (SRDS), 2000.

A. . Kistijantoro, G. Morgan, S. K. Shrivastava, and
M. C. Little. Component replication in distributed
systems: a case study using Enterprise Java Beans. In
Symp. on Reliable Distributed Systems (SRDS), 2003.

Y. Lin, B. Kemme, R. Jiménez-Peris, and M. Patifio-
Martinez. Middleware based data replication provid-
ing snapshot isolation. IBYGMOD Int. Conf. on
Management of Data, 2005.

] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith.

Strongly consistent replication and recovery of fault-
tolerant CORBA applicationsJournal of Computer
System Science and Engineering, 32(8), 2002.

E. Pacitti, P. Minet, and E. Simon. Replica consis-
tency in lazy master replicated databadeistributed
and Parallel Databases, 9(3), 2001.

F. Pedone, R. Guerraoui, and A. Schiper. The
database state machine approadbistributed and

Parallel Databases, 14(1), 2003.

C. Plattner and G. Alonso. Ganymed: Scalable
replication for transactional web applications. In
ACM/IFIP/USENIX Int. Middleware Conf., 2004.

Pra-
2002.

Pramati Technologies Private Limited.
mati Server 3.0 Administration Guide,
http://www.pramati.com.

L. Rodrigues, H. Miranda, R. Almeida, J. Martins,
and P. Vicente. Strong Replication in the Glob-
Data Middleware. InWobrkshop on Dependable
Middleware-Based Systems, 2002.

R. Vitenberg, I. Keidar, G. V. Chockler, and D. Dolev.
Group communication specification: A comprenhen-
sive study. ACM Computing Surveys, 33(4), 2001.

H. Wu, B. Kemme, and V. Maverick. Eager replica-
tion for stateful J2EE servers. Imt. Symp. on Dis-
tributed Objects and Applications (DOA), 2004.

S. Wu and B. Kemme. Postgres-R(SI): Combining
replica control with concurrency control based on
shapshot isolation. lhnt. Conf. on Data Engineer-

ing (ICDE), 2004.

[31] W. Zhao, L.E. Moser, and P.M. Melliar-Smith. Uni-

fication of transactions and replication in three-tier
architectures based on CORBAEEE Transactions

on Dependable and Secure Computing, 2(1):20— 33,
2005.

