
Exactly Once Interaction in a Multi-tier Architecture∗

Bettina Kemme†, Ricardo Jiménez-Peris∗, Marta Patiño-Martı́nez∗, Jorge Salas∗

†McGill University, Montreal, Canada, kemme@cs.mcgill.ca
∗Universidad Politcnica de Madrid (UPM), Madrid, Spain,{rjimenez,mpatino}@fi.upm.es, jsalas@alumnos.upm.es

Abstract

Multi-tier architectures are now the standard for
advanced information systems. Replication is
used to provide high-availability in such architec-
tures. Most existing approaches have focused on
replication within a single tier. For example there
exist various approaches to replicate CORBA or
J2EE based middle-tiers, or the database tier.
However, in order to provide a high-available so-
lution for the entire system, all tiers must be repli-
cated. In this paper we analyze what is needed to
couple two replicated tiers. Our focus is to ana-
lyze how to use independent replication solutions,
one for each tier, and adjust them as little as pos-
sible to provide a global solution.

1 Introduction and Background

Current information systems are often built using a multi-
tier architecture. Clients connect to an application server
(also called middle-tier) which implements the applica-
tion semantics. The application server in turn accesses
a database system (also called backend tier) to retrieve
and update persistent data. Application server (AS) and
database (DB) together build the server-side system, while
the client is external and usually an independent unit. In
this paper, we do not consider architectures where an AS
calls another AS or several DBs. The standard mecha-
nisms to provide high-availability for the server system are
logging with fast restart of failed components, or replica-
tion. [4, 3] look at fault-tolerance across tiers via log-
ging. The idea of replication is that for both AS and
DBS, there are several server replicas, and if one server
replica crashes others can take over. Existing replica-
tion solutions, both in academia and an industry have fo-
cused on the replication of a single tier. For instance,
[8, 12, 19, 22, 15, 14, 13, 31, 30, 26, 5, 18, 16] only look at
AS replication. Many of these approaches do not even con-
sider that the AS accesses a database via transactions which

∗This work has been partially supported by the MDER-Programme
PSIIRI: Projet PSIIRI-016/ADAPT (Québec), by NSERC (Canada) Rg-
pin 23910601, by the European Commission under the Adapt project
grant IST-2001-37126, and by the Spanish Research Council (MEC) un-
der grant TIN2004-07474-C02-0

have to be handled in case of an AS replica crash. Only re-
cent solutions take such database access into account. In
regard to database replication, some recent approaches are
[2, 17, 6, 23, 1, 24, 7, 9, 25, 30, 21]. Again, these ap-
proaches do not consider that the client (namely the AS
server) might be replicated. Note that an alternative way
to achieve high availability is logging with fast restart of
failed components.

However, in order to attain high availability, all tiers
should be replicated. Providing a correct replication so-
lution when considering a single tier has already shown to
be non-trivial. Providing the same degree of correctness
when multiple tiers are replicated is even more challenging
[20, 10].

We first have to understand the relationship between AS
and DB. Typically, both maintain some state. The DB con-
tains all data that can be accessed by different users (shared
data) and that should survive client sessions. The AS main-
tains volatile data. For instance, the J2EE specification for
AS distinguishes between data that is only accessible by a
single client during the client session (kept within stateful
session beans), and data cached from the DB that is ac-
cessible to all clients (kept within entity beans). There is
typically no data that is shared between clients but is not
persisted in the DB. Typically, for each client request, a
transaction is started, and all actions are performed within
the context of this transaction. If all actions are success-
ful the transaction commits before a response is returned to
the user. Otherwise, the transaction aborts, all state changes
performed so far are undone (typically both in the AS and
DB), and the client is notified accordingly. A transaction
might abort because of some application semantics (e.g.,
not enough credit available). If now either the AS or the
DB crashes, request execution is interrupted and the client
usually receives a failure exception. The task of replication
is to hide such failures from the client. Instead, replication
should provide exactly-once execution despite any possible
failures. That is, a client receives for each request submit-
ted exactly one response. This response might be an abort
notification that was caused by the application semantics
but no failure exception. Furthermore, the server has either
executed and committed exactly one transaction on behalf
of the client request or, in case of an abort notification, no
state changes on behalf of the request are reflected at the
server.

� � � � � � � � � � �
	
 � �
 �

 � � � � �

� �

� � � � � � � � � � �
	
 � �
 �

� � � � � � �

� � � �

� � � � � � � � � � �
	
 � �
 �

	
 � � � � � �

� � � � � � � � � � �
	
 � �
 �

 � � � � �

� �

� � � � � � � � � � �
	
 � �
 �

 � � � � �

� � � �

� � � � � � � � � � �
	
 � �
 �

 � � � � �

� � � � � � � � � � � � � � ! " # $ % & � % $ � ' � � � � � � � � � () � * �) + � , � & - " # .

� / � 0 � ! 1 � 1 � ! 1 � & 2 1 � � � / � & � � �

Figure 1: Replication Architectures

In order to handle an AS or DB crash, both AS and DB
should be replicated. The idea is that any state changes
performed by a transaction are known at all replicas be-
fore the response is returned to the client. In this case, if
a replica fails, the state changes of successfully executed
transactions are not lost. We see two ways to perform
replication across tiers. Atightly coupled approach has
one global replication algorithm that coordinates replica-
tion within and across tiers. The algorithm is developed
with the awareness that both tiers are replicated. In con-
trast, aloosely coupled approach takes two existing repli-
cation algorithms, one for each tier, plugs them together
and adjusts them such that they work correctly together.

For simplicity, we only look at primary/backup ap-
proaches. Each client has a primary AS replica which
executes all the requests of this client and sends the state
changes to the backup replicas. When the primary fails, a
backup takes over as new primary for this client. Asingle
primary approach requires all clients to connect to the same
primary, in amultiple primary approach each replica is pri-
mary for some clients and backup for the other primaries.

Fig. 1 (a) and (b) show tightly coupled approaches. Only
the AS is responsible to coordinate replication. We use the
term DB copies instead of replicas to express that the DB
does not actively control replication.

Fig. 1 (a) presents a tightly coupledvertical replication
approach. Each AS replica is connected to one DB copy,
and each AS replica must make sure that its DB copy con-
tains the same updates as the other DB copies. That means,
the AS primary of a client has to send not only all state
changes within the AS to the AS backups but also enough
information so that the AS backups can update their DB
copies correspondingly. Within J2EE, if all DB access is
done via entity beans (no SQL statements within session
beans), then this can be achieved by sending both changes
on session and entity beans to AS backups since the en-
tity beans reflect all DB changes. Otherwise, SQL state-
ments might have to be re-executed at the AS backups. If
either an AS replica or a DB copy fail, the corresponding
DB copy (resp. AS replica) has to be forced to fail, too.

This approach has several challenges. All AS replicas have
to guarantee to commit the same transactions with the same
AS and DB changes despite the possibility of interleaved
execution of different client requests at different replicas1.
But even if DB access is not interleaved (e.g., using a sin-
gle primary), guaranteeing the same DB changes at all sites
might be difficult if non-determinism is involved (e.g., SQL
statements contain time values). Furthermore, when an AS
/ DB replica pair recovers, the AS replica must assure that
the DB copy receives the current DB state. The DB copy
cannot help with this task because it is not even aware of
replication. Hence, recovery is a challenging task.

Fig. 1 (b) is an example of tightly coupledhorizontal
replication with a single primary AS. The AS primary is
connected to all DB copies and performs the necessary
updates on all these copies. At the time the AS primary
crashes, a given transaction might have committed at some
DB copies, be active at others, and/or has not even started at
some. When an AS backup takes over as new AS primary,
it has to make sure that such transaction eventually either
commits or aborts at all DB copies. One solution is to per-
form all DB updates within a single distributed transaction
that terminates with a 2-phase commit protocol (2PC). If
during the 2PC the AS primary informs the AS backups in
which phase a transaction is (e.g., before prepare, after pre-
pare, etc.), the new AS primary can commit or abort any
outstanding transactions appropriately [15]. However, 2PC
is very time consuming. Since the 2PC was only introduced
for replication purposes this solution very expensive. Also,
DB recovery is again a challenge.

A loosely coupled integration approach is shown in
Fig. 1(c). Since so many solutions exist for replication of
the individual tiers the idea is to simply couple any repli-
cation solution for one tier with a replication solution for
the other tier. Assume the replication solution for the AS
tier guarantees exactly-once execution under the assump-
tion that AS replicas might crash but the DB to be accessed
is reliable. Further assume the replication solution for the
DB tier expects a non-replicated client and guarantees that
each transaction either commits or aborts at all replicas.
Finally assume that the DB provides an interface such that
its clients are actually not aware that they are connected to
a replicated DB but view it as a single, reliable DB. The
question is whether plugging these two replicated tiers to-
gether without any further actions on either of the tiers re-
ally provides exactly-once execution across both tiers in the
presence of AS and DB crashes.

In the following, we analyze this issue in detail. We
take existing replication solutions for the two tiers, and
analyze which failure cases are handled correctly and for
which cases changes or enhancements have to be made to
one or both of the replication algorithms in order to provide
correctness across the entire server system. We first look at
single primary approaches, and then discuss the challenges
associated with multiple primary solutions.

1J2EE AS replication with a non-replicated DB is simpler, since the
concurrency control of the central DB handles all access to shared data.

2 Application Server Replication

Our example of a single primary AS approach is taken from
[29]. Other approaches use similar techniques [15, 13].
The approach is for J2EE architectures, assumes a reliable
centralized database and reliable communication. An AS
replica might crash. If it was connected to the DB and had
an active transaction at the DB (no commit submitted yet),
the DB aborts this transaction upon connection loss. For
space reasons we bring a simplified version that does not
consider application induced aborts.

The replication algorithm has a client, primary, backup
and failover part. At the client, a client replication algo-
rithm (CRA) intercepts all client requests, tags them with
an identifier and submits them to the AS primary (after per-
forming replica discovery). If the CRA detects the failure
of the primary, it reconnects to the new primary. Further-
more, it resubmits the last request with the same identifier
if the response was still outstanding. In J2EE, upon receiv-
ing a request, the AS server first initiates a transaction and
then calls the session bean associated with this request. The
session bean might call other session or entity beans. Each
of these beans might also access the DB. The primary repli-
cation algorithm (PRA) intercepts transaction initiationto
associate the request with the transaction. It intercepts the
calls to beans in order to capture the state changes. When
it intercepts the commit request, it sends a checkpoint con-
taining the state of all changed session beans, the request
identifier and the client response to the AS backups. Ad-
ditionally, a marker containing the request identifier is in-
serted into the DB as part of the transaction. Backups con-
firm the reception of the checkpoint. Then, the PRA for-
wards the commit to the DB, and the response is returned
to the client. For each session bean, backups only keep the
state of the bean as transmitted in the last two checkpoints
that contain the bean. If the primary fails, one backup is
elected as new primaryNP . For each clientc, NP per-
forms the following failover steps. Letr with associated
transactiontr be the last request ofc for which NP re-
ceived a checkpointcpr. NP checks whethertr commit-
ted at the DB by looking for the marker in the DB. If it
exists,tr committed. Otherwise, it aborted due to the crash
of the old primary.NP does not perform checks for earlier
requests ofc because each new checkpoint is an implicit ac-
knowledgement that previous transactions ofc committed.
Also, if tr committed,NP keeps the responserpr found
in cpr. NP sets the state of each session beanb to the state
found in the last checkpointcpr

′ containingb and transac-
tion tr′ committed. Then,NP starts the PRA algorithm.
If the CRA did not receive a response for the last request
r, it resubmits it toNP . EitherNP has storedrpr and
immediately returns it or it reexecutesr like a new request.

To see why this leads to exactly-once execution, we can
distinguish the following timepoints at which the AS pri-
mary can crash. (1) If it fails before sending the checkpoint
cpr, then the corresponding transactiontr aborts, and the
new primaryNP has no information aboutr. The CRA re-
submitsr and it is executed as a new request. (2) If it fails

after sendingcpr but before committingtr at the DB,tr
aborts.NP checks in the DB but does not find the marker,
hence ignores the state changes and response found incpr.
The CRA resubmitsr and it is executed as a new request.
(3) If it fails after committingtr but before returning the re-
sponse,NP finds the marker, applies the state changes on
the session beans, and keeps the responserpr. When CRA
resubmitsr, NP immediately returnsrpr. r is not again
executed. (4) If it fails after returningrpr to the client,tr
committed,NP has the state changes on beans, and the
CRA does not resubmitr providing exactly-once.

3 Database Server Replication

Commercial databases have provided high-availability so-
lutions for a long time [11]. However, since the documen-
tation available to us is not very precise, the following de-
scribes our suggestion of a highly-available solution with
a single DB primary and one DB backup (adjusted from
[21]).

All communication with the DB is via the JDBC driver
provided by the DB. The JDBC driver runs in the context
of the application. Upon a connection request from the
application, the JDBC driver connects to the DB primary
(address can be read from a configuration file). The appli-
cation submits transaction commands and SQL statements
through the JDBC driver to the DB primary where they are
executed. Upon the commit request from the application,
the DB primary propagates all changes performed by the
transaction in form of a writeset to the backup. It waits un-
til the backup confirms the reception of the writeset. Then
it commits the transaction and returns the ok to the appli-
cation. Writesets are sent in FIFO order, and the backup
applies the writesets in the order it receives it.

If the DB primary crashes the JDBC driver looses its
connections. The driver automatically reconnects to the
backup which becomes the new primary. At the time of
crash a connection might have been in one of the following
states. (1) No transaction was active on the connection. In
this case, failover is completely transparent. (2) A transac-
tion T was active and the application has not yet submitted
the commit request. In this case, the backup does not know
about the existence ofT . Hence,T is lost. The JDBC
driver returns an appropriate exception to the application.
But the connection is not declared lost, and the application
can restartT . (3) A transactionT was active and the appli-
cation already submitted the commit request, but it did not
receive the commit confirmation from the old DB primary
before its crash. In this case, the backup (a) might have
received and appliedT ’s writeset and committedT , or (b)
it did not receiveT ’s writeset before the crash. Hence, it
does not know about the existence ofT , andT must be
considered aborted as under case (2).

Let’s have a closer look at case 3. Generally, if a non-
replicated DB crashes after a commit request but before re-
turning the ok, the application does not know the outcome
of the transaction. With replication, however, we can do
better. When a new transaction starts at the DB primary,

3 4 5 6 7 8 9 6 :

; < = 6 7 8 9 6 : ; < > 9 ? @ A =

3 4 < 9 ? @ A =

B ; < C D 6 E B ; < C D 6 E

C F 7 G H I

C J 3

Figure 2: Loose Coupling of single primary AS and DB

the DB primary assigns a unique transaction identifier and
returns it to the JDBC driver. Furthermore, the identifier is
forwarded to the backup together with the writeset. If the
DB primary crashes before returning the ok for a commit
request, the JDBC driver connects to the backup and in-
quires about the commit of the in-doubt transaction (using
the transaction identifier). If the backup did not receive the
writeset before the crash (case 3b), it does not recognize the
identifier and informs the JDBC driver accordingly. The
JDBC driver returns the same exception to the application
as in case 2. If the backup received the writeset (case 3a),
it recognizes the identifier, and returns the commit confir-
mation to the JDBC which informs the application. In this
case, failover is transparent. Garbage collection is quite
simple because for each connection the JDBC driver might
ask only for the outcome of the last transaction.

One has to be aware that, due to the asynchrony in the
system, the backup might receive the inquiry about a trans-
action from a driver and after that it receives the writeset
for the transaction (the primary had sent the writeset before
the crash but the backup had not yet retrieved it from the
communication channel). In order to handle this correctly,
the backup does not immediately return to the JDBC driver
if its does not find the transaction identifier. Instead, be-
fore allowing any JDBC requests, it switches to failover
and first applies and commits all outstanding writesets that
were successfuly transferred to the backup before the pri-
mary’s crash. Only then, it responds to JDBC requests.

The approach above is actually quite similar to the com-
bination of CRA/PRA algorithm for AS replication where
the JDBC driver takes over the task of CRA. The main
difference is that in AS replication, each request was ex-
ecuted in an individual transaction that started at the AS.
With this, it is easy to provide exactly-once, and failover
is completely transparent. In contrast, in the DB environ-
ment, the application starts and ends a transaction, and sev-
eral requests can be embedded in this transaction. Hence,
if the primary crashes in the middle of executing the trans-
action, the application receives a failure exception. Hence,
execution is actually at-most once.

4 AS / DB Integration

Fig. 2 shows how the algorithms of Sections 2 and 3 are
coupled. We can distinguish different failure cases.

4.1 DB primary fails, AS primary does not fail

We look at the state of each connection between AS pri-
mary and DB primary at the time the DB primary crashes.

If no transaction was active, the AS primary does not
even notice that the driver reconnects to the DB backup.
If a transactiontr triggered by client requestr was active
but the AS primary had not yet submitted the commit, the
JDBC driver returns a failure exception and the AS primary
knows thattr aborted.tr might already have changed some
state (beans) at the AS primary leading to inconsistency.
The task of the AS primary is to resolve this inconsistency
and hide the DB crash from the client, i.e., provide exactly-
once execution forr despite the DB primary crash. This
task is actually quite simple. The AS primary has to undo
the state changes on the beans executed on behalf oftr.
Then, it simply has to restart the execution ofr initiating
a new transaction. The JDBC driver has already connected
to the DB backup which is now the new DB primary. The
AS primary is not even aware of this reconnection. Reexe-
cuting the client request is fine since all effects of the first
execution have been undone at the AS and the DB, and no
response has yet been returned to the client.

In the third case the DB primary fails after the AS pri-
mary submitted the commit request fortr but before the ok
was returned. In this case, the JDBC driver detects whether
the DB backup committedtr or not. Accordingly, it re-
turns a commit confirmation or exception to the AS primary
(case 3 of Section 3). In case of commit, the AS primary is
not even aware of the DB failover and returns the response
to its client as usual. In case of an exception it should be-
have as above. It should undo the state changes on beans
performed bytr and reexecuter. There is one more issue.
Since the AS primary first transfers the checkpointcpr for
r to the AS backups and then submits the commit to the
DB, the AS backups havecpr containing the changes of
aborted transactiontr. There are now two cases. Firstly,
the AS primary successfully reexecutesr and sends a new
checkpoint forr to the AS backups. In this case, the AS
backups should discard the old, invalid checkpoint. Sec-
ondly, the AS primary might crash during reexecution be-
fore sending a new checkpoint. In this case, the AS backup
that takes over as new AS primary checks for the marker
(corresponding to the old checkpoint) but will not find it in
the DB, and discard the checkpoint. That is, in any case,
the old invalid checkpoint is ignored.

In summary, little has to be done in case of the crash of
the DB primary in order to correctly couple the two replica-
tion algorithms. The only action that has to be performed is
the following: whenever the AS primary receives a failure
exception from the JDBC driver for a transactiont, it has
to abortt at the AS level, and restart the execution of the
corresponding client request.

4.2 DB primary does not fail, AS primary fails

When the AS primary fails its connections to the DB pri-
mary are lost. The DB primary aborts each active transac-
tion for which it did not receive the commit request before
the crash. This is the same behavior as that of a centralized
DB system. At AS failover, the new AS primary connects
to the DB primary and checks for the markers for the last
checkpoints it received from the old AS primary. Since it
is connected to the same DB replica as the old AS primary
was, it will read the same information as in a centralized
DB system. As a result, nothing has to be done in case of
the crash of the AS primary in order to correctly couple the
two replication algorithms. The failover actions of the AS
replication algorithm of Section 2 are correct, whether the
AS is connected to a reliable centralized DB system or to a
replicated DB based on the algorithm of Section 3.

4.3 Both DB and AS primaries fail

Crash at the same time This is possible if DB and AS pri-
maries run on the same machine, and the machine crashes.
In this case the JDBC driver of the new AS primary con-
nects to the new DB primary. Nevertheless, failover can be
performed in exactly the same way. There is only one issue.
The new DB primary may not execute any requests from
the new AS primary before it has applied and committed
all writesets it has received from the old DB primary, i.e.,
before failover is completed. Otherwise, the new AS pri-
mary could check for a marker for a requestr, not find it,
and only after that the new DB primary processes the write-
set of the corresponding transactiontr and commitstr. In
this case, the new AS primary would discardr’s checkpoint
and reexecuter leading to a new transactiont′

r
althoughtr

already committed at the DB.

Crash at different times The interesting case is if the AS
primary first fails, the new AS primary performs failover,
and while checking for markers in the DB primary, the DB
primary crashes. Checking for a marker is a simple transac-
tion. If the DB primary fails in the middle of execution, the
JDBC driver returns a failure exception to the new AS pri-
mary. The new AS primary can simply resubmit the query,
and the JDBC driver redirects it to the new DB primary
where it will be answered once the new DB primary has
processed all writesets from the old DB primary.

4.4 Summary

The discussion above shows that with the two particular AS
and DB replication algorithms, the coupling is extremely
simple. There is only one slight modification to the AS
replication algorithm. Since the failure of the DB primary
is not completely transparent (the application receives fail-
ure exceptions for any active transaction), the AS might
have to reexecute a request if the DB primary fails. No
other changes have to be performed.

5 Multiple Primary Approaches
Recall that with multiple primaries, each replica can be pri-
mary of some clients and backup for the other primaries.

5.1 Multiple AS Primaries

Extending above single primary AS algorithm to allow for
multiple primaries is straightforward as long as client ses-
sions are sticky (a client always interacts with the same AS
replica during the lifetime of a session unless the AS replica
crashes), and as long as access to shared data is synchro-
nized via the DB tier2. Some load balancing mechanism is
needed to assign new clients to one of the AS replicas but
the basics of the replication algorithm can remain the same.

Coupling with a single DB primary We can use the
failover mechanism of the single AS primary solution pre-
sented in Section 4 without any changes. If any of the AS
replicas fails, only the clients for which this AS replica was
primary must be failed over to another AS replica.

5.2 Multiple DB Primaries

Many recent systems [17, 23, 27, 24, 30, 21] allow an ap-
plication to connect to any DB replica which executes the
transaction locally and at commit time multicasts the write-
set to the other DB replicas. Since transactions on differ-
ent DB replicas might access the same data, conflicts must
now be detected across the system. A typical solution is to
use the primitives of a group communication system (GCS)
[28]. The replicas build a group and writesets are multi-
cast such that all group members receive the writesets in
the same total order. If two transactions are concurrent and
conflict then the one whose writeset is delivered later must
abort at all replicas. There exist many solutions to detect
such conflicts using locking, optimistic validation, snap-
shots, etc. GCS also detect the crash of group members
and inform surviving members with a view change mes-
sage. Writesets are usually multicast with a uniform reli-
able delivery guaranteeing that if one DB replica receives
a writeset each other replica also receives it or is removed
from the group.

Failover after the crash of a DB replica is proposed in
[21] and nearly as described in Section 3. The replicated
DB has one fixed IP multicast address. To connect the
extended JDBC driver multicasts a discovery message to
this address. DB replicas that are able to handle additional
workload respond and the driver connects to one of them.
Let’s denote it withdb. If db crashes, the JDBC driver re-
connects to another DB replicadb′. Only crash case 3 of
Section 3 where the commit for a transactiont was sub-
mitted butdb crashes before returning an answer must be
handled slightly different than in Section 3. Due to the
asynchrony of message delivery, the JDBC driver might in-
quire about the commit oft atdb′, and only afterwardsdb′

receivest’s writeset. In order to handle this correctlyt’s
identifier contains information thatt was executed atdb.

2Transactions on different AS replicas may access shared data via en-
tity beans but access is synchronized with the DB before commit.

Then,db′ waits until the GCS informs it about the crash of
db. According to properties of the GCS,db′ can be sure that
it either receivest’s writeset before the view change remov-
ing db (and then, tells the JDBC driver about the outcome),
or not at all (and then, returns a failure exception).
Coupling with a single AS primary Assume the AS pri-
mary is connected to DB replicadb.

If neither the AS primary nordb fail, then the only dif-
ference to Section 4 is that a transactiontr might now abort
at the DB tier at commit time because of a conflict. The
AS primary can hide such abort could from the AS client
by undoing the AS state changes oftr and reexecutingr
as done in Section 4.1 when the transaction aborts due the
crash of the DB primary.

If the AS primary does not fail butdb fails, the AS pri-
mary might receive an abort or failure exception for a trans-
actiontr. As in Section 4.1, the AS primary abortstr at the
AS level and reexecutesr.

If the AS primary fails and the new AS primary connects
again todb, the situation is as in Section 4.2.

The only really interesting case is if the AS primary
fails, and the new AS primaryNP connects to DB replica
db′ 6= db (this might happen due because of load-balancing
issues or becausedb also fails).NP checks for markers in
db′. These are simple read only transactions. However, we
have again the problem of asynchrony. Althoughdb′ might
have receivedtr’s writeset it might still execute it while
NP checks forr’s marker. Hence,NP will not find the
marker buttr later commits. Conceptually, the problem is
similar to the JDBC driver inquiring about the commit of a
transaction but the DB replica might not yet have processed
the writeset. The difference is that the JDBC driver is part
of the DB replication system. Hence, coordination is sim-
pler. Whendb′ receives an inquiry from the JDBC driver
for a transaction that was executed ondb, it knows it has
to wait until it either receives the writeset or a view change
message from the GCS. However, when theNP looks for a
marker, this is a completely new, local transaction, anddb′

cannot know that this transaction actually inquires abouttr.
In order to allowNP to connect to any DB replicadb′

we suggest to extend both the AS and DB replication so-
lutions slightly. Firstly, we make a JDBC connection ob-
ject a “state” object which keeps track of the last transac-
tion tr associated with the connection.tr ’s identifier im-
plicitly contains the identifier of the DB replica it is exe-
cuted on (e.g.,db). Secondly, we make the submission of
the commit request over a given connection to the repli-
cated DB an idempotent operation. We show shortly how
this is achieved. Furthermore, the new AS primaryNP

has to perform the following actions at failover. Instead
of checking for the marker ofr for the last checkpointcpr

of a client,NP submits the commit request fortr using
the connection object found incpr. At this timepoint, the
connection object is not really connected to any DB replica.
Hence, it connects to any DB replicadb′ and inquires about
the commit oftr. Assume first thatdb′ = db. db, before
the old AS primary crashed might have already received

tr ’s commit request or not. In the first case, it had either
committedtr or aborted due to conflict. In the second case,
it has abortedtr due to the crash of the AS primary. Hence,
it returns the corresponding outcome to the driver which re-
turns it toNP . In case of commit,NP applies the state in
cpr and keeps track of the response, otherwise it discards
cpr and restarts execution ofr when the client resubmits.
If db′ 6= db, thendb′ can detect by looking attr thattr was
originally executed atdb. db′ knows that the driver would
only send a commit inquiry of a transaction executed ondb

if db crashed. Hence, it waits until it has received from the
GCStr ’s writeset or the view change message excludingdb

from the group. In the first case, it returns a commit/abort
answer depending on conflicts. In the second case, it re-
turns a failure exception. The driver forwards this decision
to NP which handlescpr accordingly.

With this mechanism, there is actually no need for the
marker mechanism. Instead of looking for the marker,
the new AS primary simply submits the commit request
over the connection object copy. It either receives the out-
come of the transaction (commit/abort) or a failure excep-
tion. Hence, this extended functionality of the DB repli-
cation algorithm – allowing a resubmission of a commit
request (with idempotent characteristics) – provides addi-
tional functionality over a centralized system. As a result,
the AS replication algorithm can be simplified avoiding to
insert a marker for each transaction.

6 Conclusions
This paper analyzes various approaches for replication both
at AS and DB tier. The main focus is to combine typical
existing replication solutions, developed for the replication
of one tier, to provide a replication solution for the entire
multi-tier architecture. We show that only minor changes
need to be performed to the existing solutions in order to
provide exactly-once execution across the entire system.
One main issue is that the replicated AS tier should hide
DB crashes from its own clients. This is easy to achieve.
The second main issue is for the AS tier to detect whether a
given transaction committed at the DB tier in the presence
of crashes of AS and/or DB replicas. A transparent solution
is embedded in a replication aware JDBC driver.

References
[1] C. Amza, A. L. Cox, and W. Zwaenepoel. Dis-

tributed versioning: Consistent replication for scaling
back-end databases of dynamic content web sites. In
ACM/IFIP/USENIX Int. Middleware Conf., 2003.

[2] T. Anderson, Y. Breitbart, H. F. Korth, and A. Wool.
Replication, consistency, and practicality: Are these
mutually exclusive? InSIGMOD Int. Conf. on Man-
agement of Data, 1998.

[3] R. Barga, S. Chen, and D. Lomet. Improving log-
ging and recovery performance in phoenix/app. In
Int. Conf. on Data Engineering (ICDE), 2004.

[4] R. Barga, D. Lomet, and G. Weikum. Recovery guar-
antees for general multi-tier applications. InInt. Conf.
on Data Engineering (ICDE), 2002.

[5] BEA Systems. WebLogic Server 7.0. Programming
WebLogic Enterprise JavaBeans, 2005.

[6] K. Böhm, T. Grabs, U. Röhm, and H.-J. Schek.
Evaluating the coordination overhead of synchronous
replica maintenance. InEuro-Par, 2000.

[7] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-
JDBC: flexible database clustering middleware. In
USENIX Annual Technical Conference, FREENIX
Track, 2004.

[8] M. Cukier, J.. Ren, C. Sabnis, D. Henke, J. Pistole,
W. H. Sanders, D. E. Bakken, M. E. Berman, D. A.
Karr, and R. E Schantz. AQuA: an adaptive architec-
ture that provides dependable distributed objects. In
Symp. on Reliable Distributed Systems (SRDS), 1998.

[9] K. Daudjee and K. Salem. Lazy database replication
with ordering guarantees. InInt. Conf. on Data Engi-
neering (ICDE), 2004.

[10] E. Dekel and G. Goft. ITRA: Inter-tier relationship
architecture for end-to-end QoS.The Journal of Su-
percomputing, 28, 2004.

[11] S. Drake, W. Hu, D. M. McInnis, M. Sköld, A. Srivas-
tava, L. Thalmann, M. Tikkanen, Ø. Torbjørnsen, and
A. Wolski. Architecture of highly available databases.
In Int. Service Availability Symposium (ISAS), 2004.

[12] P. Felber, R. Guerraoui, and A. Schiper. Repli-
cation of CORBA objects. In S. Shrivastava and
S. Krakowiak, editors,Advances in Distributed Sys-
tems. LNCS 1752, Springer, 2000.

[13] P. Felber and P. Narasimhan. Reconciling replica-
tion and transactions for the end-to-end reliability of
CORBA applications. InInt. Symp. on Distributed
Objects and Applications (DOA), 2002.

[14] S. Frølund and R. Guerraoui. A pragmatic implemen-
tation of e-transactions. InSymp. on Reliable Dis-
tributed Systems (SRDS), Nürnberg, Germany, 2000.

[15] S. Frølund and R. Guerraoui. e-transactions: End-
to-end reliability for three-tier architectures.IEEE
Transactions on Software Engineering (TSE), 28(4),
2002.

[16] The JBoss Group. JBoss application server.
http://www.jboss.org.

[17] J. Holliday, D. Agrawal, and A. El Abbadi. The per-
formance of database replication with group commu-
nication. InInt. Symp. on Fault-Tolerant Computing
(FTCS), 1999.

[18] IBM. WebSphere 6 Application Server Network De-
ployment, 2005.

[19] M.-O. Killijian and J. C. Fabre. Implementing a re-
flective fault-tolerant CORBA system. InSymp. on
Reliable Distributed Systems (SRDS), 2000.

[20] A. I. Kistijantoro, G. Morgan, S. K. Shrivastava, and
M. C. Little. Component replication in distributed
systems: a case study using Enterprise Java Beans. In
Symp. on Reliable Distributed Systems (SRDS), 2003.

[21] Y. Lin, B. Kemme, R. Jiménez-Peris, and M. Patiño-
Martı́nez. Middleware based data replication provid-
ing snapshot isolation. InSIGMOD Int. Conf. on
Management of Data, 2005.

[22] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith.
Strongly consistent replication and recovery of fault-
tolerant CORBA applications.Journal of Computer
System Science and Engineering, 32(8), 2002.

[23] E. Pacitti, P. Minet, and E. Simon. Replica consis-
tency in lazy master replicated databases.Distributed
and Parallel Databases, 9(3), 2001.

[24] F. Pedone, R. Guerraoui, and A. Schiper. The
database state machine approach.Distributed and
Parallel Databases, 14(1), 2003.

[25] C. Plattner and G. Alonso. Ganymed: Scalable
replication for transactional web applications. In
ACM/IFIP/USENIX Int. Middleware Conf., 2004.

[26] Pramati Technologies Private Limited. Pra-
mati Server 3.0 Administration Guide, 2002.
http://www.pramati.com.

[27] L. Rodrigues, H. Miranda, R. Almeida, J. Martins,
and P. Vicente. Strong Replication in the Glob-
Data Middleware. InWorkshop on Dependable
Middleware-Based Systems, 2002.

[28] R. Vitenberg, I. Keidar, G. V. Chockler, and D. Dolev.
Group communication specification: A comprenhen-
sive study.ACM Computing Surveys, 33(4), 2001.

[29] H. Wu, B. Kemme, and V. Maverick. Eager replica-
tion for stateful J2EE servers. InInt. Symp. on Dis-
tributed Objects and Applications (DOA), 2004.

[30] S. Wu and B. Kemme. Postgres-R(SI): Combining
replica control with concurrency control based on
snapshot isolation. InInt. Conf. on Data Engineer-
ing (ICDE), 2004.

[31] W. Zhao, L.E. Moser, and P.M. Melliar-Smith. Uni-
fication of transactions and replication in three-tier
architectures based on CORBA.IEEE Transactions
on Dependable and Secure Computing, 2(1):20– 33,
2005.

