
Dynamic Quorums for DHT-based P2P Networks∗

Roberto Baldoni1, Ricardo Jiménez-Peris2, Marta Patiño-Martı́nez2, Leonardo Querzoni1 and Antonino Virgillito1

1 Dipartimento di Informatica e Sistemistica - Università di Roma “La Sapienza”, Roma, Italy
{baldoni,querzoni,virgi}@dis.uniroma1.it

2 Universidad Politécnica de Madrid (UPM), Madrid, Spain
{rjimenez,mpatino}@fi.upm.es

Abstract

Peer-to-peer systems (P2P) have become a popular tech-
nique to architect decentralized systems. However, despite
its popularity most P2P systems consist in simple applica-
tions such as file sharing or chat systems. The main reason
is that more complex applications require levels of consis-
tency that nowadays are not offered by P2P systems. In
this paper, we explore how to provide consistency based on
distributed mutual exclusion via quorum systems in DHT-
based P2P networks. Our results show that quorum systems
applied directly to such networks are not scalable due to
the high traffic imposed onto the underlying network. The
paper introduces some design principles for both quorum
systems and protocols using them that help to boost their
performance. These design principles consist in dynamic
and decentralized selection of quorums and in the exposi-
tion and exploitation of internals of the DHT such as the
finger table. We show that by combining both design prin-
ciples it is possible to minimize the number of visited sites
and the latency needed to obtain a quorum.

1 Introduction

Despite the growing popularity of peer-to-peer (P2P)
technology, its applicability remains constrained to simple
systems such as file sharing and chat systems. Complex ap-
plications have not been built on top of P2P mainly due to
the lack of consistency guarantees in such systems. Sev-
eral research contributions aiming at increasing the consis-
tency guarantees in P2P applications have appeared in re-
cent years [14, 17, 5, 12, 1, 10], confirming the need for
research on these topics. An example of more sophisticated

∗This work has been partially funded by an Integrated Action Italy-
Spain HI2003-0036 and the Spanish Research Council (MEC) TIN2004-
07474-C02-01

infrastructure for P2P systems is Adlib [8] that provides
support for complex index structures. In Adlib the config-
uration of the index structure, its hierarchical organization,
should be stored (and maintained) in the underlying P2P
network with very high resilience. Additionally, its con-
sistency should be guaranteed in the presence of multiple
writers. Typically this information is kept in a fraction of
the network by resorting to hierarchical P2P systems, such
as Crescendo [7], a hierarchical Chord ring.

In this paper, we focus on one of the main mechanisms
used to attain consistency: mutual exclusion. P2P systems
are inherently decentralized what means that approaches to
mutual exclusion should be decentralized as well. In this
paper we have chosen quorum systems for implementing
distributed mutual exclusion. A quorum system over a set
of sites consists of a set of mutually intersecting subsets of
sites (quorums). Mutual exclusion based on quorum sys-
tems consists in requesting permission to a random quorum
of sites. If all the sites in the quorum grant permission, no
other quorum could have granted permission. Mutual ex-
clusion can be used to solve conflicts in concurrent access
to shared data. These accesses may occur once in a while
in all common distributed applications deployed over a P2P
system (such as distributed storage, trust management, mul-
tiplayer games).

A large variety of quorum systems have been proposed
in the literature. Quorum systems have been traditionally
compared in terms of availability, load [15] and the num-
ber of messages required to acquire a quorum (referred to
in the following as acquisition cost). While load and avail-
ability depend on combinatorial properties of the quorum
structure, acquisition cost is related to the number of mes-
sages required to contact all the sites in a quorum. That
is, the message complexity or acquisition cost depends on
how a quorum is obtained. In traditional distributed systems
each site can access any other site directly (one message),
while in a P2P system each site only knows a few neighbor



sites to enable scalability in large scale settings. This means
that the cost of accessing different sites is not fixed. A few
sites are accessible within one hop, but the rest of the sites
require routing through other sites and therefore, additional
hops. Research in P2P systems has come out with routing
infrastructures (Distributed Hash Tables - DHTs) in which
the number of hops has an upper bound of O(log(n)) hops.
In a P2P system, acquisition cost is strongly affected by the
overhead induced by the routing in the P2P network.

The paper presents a general canvas in the form of a
generic algorithm to reason and compare the different pro-
tocols for obtaining quorums in terms of acquisition cost
and latency. We propose two design principles for quorum
systems over P2P architectures, namely delegation and in-
tegration, and discuss their impact on both the acquisition
cost and the latency. The first design principle lies in se-
lecting quorums dynamically in a decentralized fashion. In
other words, a set of delegated sites is responsible for select-
ing and obtaining a grant from a subset of the whole quorum
on behalf of the requesting site. By forming quorums in this
way, it becomes possible to have some flexibility in select-
ing the most convenient sites in order to reduce the acquisi-
tion cost. The second design principle consists in exposing
internal information of DHT routing, more concretely, the
finger table and the interval of keys for which a site is re-
sponsible. This information enables to know which sites
can be reached directly and therefore to determine which
are potentially most convenient. Hence, by combining the
two design principles it becomes possible to minimize the
number of visited sites and exchanged messages. We ex-
ercise these two design principles in two quorum systems.
The first one, namely farsighted, is a novel system that ex-
tends the traditional hierarchical quorum consensus [11] of-
fering higher flexibility in choosing quorums and allowing
to obtain smaller quorums. The second quorum system is
the classical grid quorum [4]. We developed a decentral-
ized version of the grid quorum with a strong accent on
delegation that also minimizes the number of visited sites.
Finally, we provide an extensive simulation study of the de-
ployment of all the aforementioned quorum systems over a
ring-based DHT, namely Chord. Simulations show the per-
formance gain obtainable by using the integrated approach
with respect to the layered one for farsighted, grid and other
quorum systems. Moreover, the study points out an interest-
ing tradeoff between the acquisition cost and latency.

It might be argued that using a quorum at system level
is not a good idea for large P2P networks. Optimal quorum
systems have a size of

√
n sites that is much higher than

the targeted log(n) complexities in P2P systems. In this
paper we target hierarchical DHTs such as Crescendo [7],
where a quorum request will be performed on a fraction of
the whole P2P network. This means that in practical terms
for a large network of a few millions of sites, one Crescendo

subring can contain a few thousands of sites (depending on
the actual hierarchy used).

The paper is structured as follows: Section 2 presents
some background on quorum systems and DHT infrastruc-
tures (Chord, in particular). The Farsighted quorum sys-
tem is described in Section 3. In Section 4 we introduce a
general algorithm for acquiring a quorum over a DHT P2P
infrastructure and in Section 5 we propose several instanti-
ations of the general algorithm. Experimental evaluation of
all the proposed solutions is presented in Section 6. Section
7 presents related work and Section 8 concludes the paper.

2 Background

In this section we introduce quorum systems defined for
classical distributed systems and a brief summary of Chord
that will be used as concrete DHT infrastructure1.

Quorum Systems. Given a set of sites N , a set system
universe S = {S1, S2, ..Sn} is a collection of subsets
Si ⊆ N over N . A quorum system defined over N is a
set system S that has the following intersection property:
∀i, j ∈ {1..n}, Si ∩ Sj �= ∅. Many quorum systems have
been proposed in the literature. In this paper we consider
two quorum systems, namely rectangular grid and hier-
archical quorum consensus. A rectangular grid quorum
system organizes N sites in a grid of r rows and c columns
(N = r · c) [4]. A quorum consists of an entire row and one
element from each of the remaining rows (quorum size =
c + r − 1). When a grid is a square, it becomes optimal in
terms of quorum size. The quorum size for a square grid is
2·√n−1. Hierarchical quorum consensus (HQC) [11] con-
sists in organizing the sites into a hierarchy. This hierarchy
is represented as a complete tree where sites appear at the
leaves of the tree. A quorum consists of the leaves obtained
choosing a majority of the root children (	d/2
 + 1) and
applying the same procedure recursively for each selected
child. The quorum size for HQC is minimal when the
tree degree is three [11] yielding a quorum size of O(n 0.63).

P2P Distributed Hash Tables and Chord. Peer-to-peer
Distributed Hash Tables (DHTs) are overlay networks de-
ployed on top of existing networks (mainly TCP/IP infras-
tructures) to provide self-organization and routing capabil-
ities to applications. The common idea behind most such
schemes is that, instead of being routed directly using phys-
ical sites’ addresses ranging over a site space N , messages
are routed using logical key identifiers, defined over a key
space K . In ring-based DHTs, like Chord [18], the key

1Even though the experiments have been conducted on the top of
Chord, the underlying DHT can actually be any ring-based structured P2P
system.



space is a unidimensional circular space, while in range-
based DHTs like CAN [16] the key space is a n-dimensional
space. For the purposes of this paper, we consider a specific
ring-based DHT routing protocol, Chord. The Chord proto-
col is based on a hash function that maps keys to the actual
sites (a key is covered by some site). This function assigns
each site and key an m-bit identifier. These identifiers are
ordered on an identifier ring modulo 2m. The identifier ring
is called the Chord ring. Key k is assigned to the first site
(called the successor site of key k) whose identifier is equal
to or follows k in the ring. The system automatically routes
messages to the site which is responsible for the destination
key and repairs key assignment in case of sites joining and
leaving the system. For efficient key lookup, each site main-
tains a table called finger table. A finger table contains up
to m entries in an N -site network. The ith entry in the table
at site n is the successor site s of the identifier (n + 2i−1)
modulo 2m. Site s is called the ith finger of site n. Each
entry also contains the IP address and the port number of
the relevant node.

3 The Farsighted Quorum System

In this section we propose a hierarchical quorum sys-
tem, farsighted quorum consensus system (FQC). FQC is
similar to HQC in the sense that sites are the leaves of a
complete tree although, FQC is more general and flexible
than HQC in the choice of quorums. This allows the se-
lection of quorums with lower size in FQC than in HQC.
The difference between HQC and FQC is the quorum for-
mation. As in HQC, keys are the leaves of a complete tree
with a degree d. In HQC a majority of the root children
(	d/2
+1) are selected and for each selected child the same
procedure is applied recursively. In FQC, a given number
of children of the root are chosen. For each of them, some
of their children are selected again. The same procedure is
applied recursively for the latter children. The number of
children selected at each level depends from the number of
children at the level above, as we detail below. For instance,
if there are 16 sites organized in tree of degree 4, we can se-
lect 4 children in the first level and then 4 children from
the first child, and 1 child from each of the other children.
As an example, {0, 1, 2, 3, 4, 8, 12}, {0, 1, 2, 3, 5, 9, 12},
{0, 1, 2, 3, 6, 10, 15} are valid quorums. In this case, a quo-
rum consists of 7 sites, while 9 sites are needed for HQC. It
is easy to see in Figure 2 that it is a quorum system (i.e. it
fulfills the intersection property).

Given a set of n sites, which are the leaves of a com-
plete tree of degree d and odd height, a quorum in FQC
is defined as the set of sites that result from applying
(height(tree) − 1)/2 tuples, (f1, f2, · · · , fd), 0 ≤ fi ≤ d
to the tree. A tuple is applied to an odd level (outer level)
and to the next level (inner level). If fx �= 0, fx is the num-

ber of children selected in the inner level for child x of the
outer level. If fx = 0 no children of x are selected. We call
each tuple a pattern and a set of patterns a tactic. A tactic
over a complete tree of degree d with an odd number of lev-
els is an FQC if for each pair of patterns (f1, f2, · · · , fd),
(g1, g2, · · · , gd) ∈ tactic,∃k | fk + gk > d. That is, they
fulfill the intersection property of quorum systems.

FQC is more general than HQC in the sense that HQC is
an instance of FQC. In particular, FQC looks at two consec-
utive levels of the hierarchy at a time. Given two consecu-
tive levels, it decides how many children of the inner level
will be taken for each children of the outer level. The quo-
rum chosen in HQC for a tree with degree 4 is represented
in FQC using the tactic containing all the permutations of
the pattern (3, 3, 3, 0) (also called pattern set). The pattern
(3, 3, 3, 0) means that the first three children of a level are
selected. For each of these children again 3 of its children
are selected. The tactic for HQC satisfies the FQC quorum
formation condition. Another example of valid pattern for a
tree of degree 4 is the pattern set (3, 2, 2, 2). The tactic con-
sisting of that pattern set satisfies the quorum condition. (3,
2, 2, 2) and (2, 2, 2, 3) intersect in the first and the last com-
ponents (3 + 2 > 4). The pattern sets (3, 3, 3, 0) and (3, 2,
2, 2) also fulfill the FQC condition. The pattern set (4, 1, 1,
1) is compatible with the pattern set (3, 2, 2, 2) but not with
the pattern set (3, 3, 3, 0). The tactic with the pattern sets
(3, 2, 2, 2) and (3, 3, 2, 0) also fulfills the intersection prop-
erty. There are patterns that are just an extension of other
patterns. That is, they have a bigger value in some compo-
nents. For instance, (3, 3, 2, 1) is just an extension of (3, 3,
2, 0). These extension patterns require more children, and
therefore, they increase the quorum size. Although, they
may help to increase the flexibility of a tactic. For instance,
the pattern set (4,1,1,1) does not intersect with the pattern
set (3, 3, 2, 0). Therefore, they are not a FCQ. However,
(4, 3, 2, 0), an extension of (3, 3, 2, 0), is compatible with
the pattern set (4, 1, 1, 1). The combination of the two pat-
tern sets yields a highly flexible tactic in which for the first
outer interval it is possible to pick either 0, 1, 2, 3 or 4 inner
intervals.

The flexibility in choosing patterns in FCQ allows to se-
lect patterns exhibiting a lower quorum size than HQC. The
size of the quorum in FCQ depends on the tactic. For a
tactic composed of a single pattern set (f1, . . . , fd) the quo-
rum formation is defined over a tree of degree d and height
(logdn) + 1. Since FQC considers pairs of levels, this is
equivalent to define a quorum over a tree of degree d 2 with
half the height of the original tree, logd2n = (logdn)+1/2.
A quorum consists of the leaves of a subtree of this tree in
which at each level

∑
i fi (where fi is defined by the pat-

tern) children are taken. Hence, the quorum size is the num-
ber of leaves of a tree of degree

∑
i fi and height logd2n,

that it is: (
∑

i fi)logd2n. For arbitrary tactics, the quorum



size depends on the pattern applied at each level. Gen-
eralizing the previous formula, the quorum size for a se-
quence (p1

1, p
1
2, . . . , p

1
d), . . . , (p

t
1, p

t
2, . . . , p

t
d) of patterns is

computed as the product of the sum of each of them, that is,∏t
i=1

∑d
j=1 pi

j .

4 Quorum Systems over P2P Networks

The basic idea about quorum systems applied to a P2P
network is to allow a process to gain exclusive control of the
key space. This can be obtained adapting classical quorum
algorithms where a quorum is actually a set of keys over
the whole key space. Exclusive control of the key space
can be requested by any key and, upon this request, the site
responsible for that key starts the protocol for the quorum
acquisition.
The Notion of Quorum Acquisition Cost. In classical quo-
rum systems the cost, in terms of application messages ex-
changed between sites, for the acquisition of a grant on a
single site is usually one, as each site can contact any other
site directly. Given a quorum defined on a P2P network, the
cost for the acquisition of a grant on a key k, in terms of
message overhead, depends both on the position of k and
on the position of the quorum requester in the key space.
This overhead is due to the routing mechanisms of the DHT,
i.e. key k is reachable by the quorum requester in O(logn)
hops. This overhead must be taken into account to obtain
a realistic view of the effective load generated by a specific
quorum system on the underlying network. For this reason,
we define the quorum acquisition cost of a quorum system
over a P2P network as the average number of messages ex-
changed at the DHT level to obtain all grants required by a
quorum.
A General Algorithm. In this section we introduce a gen-
eral algorithm for the acquisition of quorums over DHT-
based P2P networks. The algorithm (Fig. 1) is a generic
canvas that embeds several functions, namely GetQuorum,
Acquire, and ChooseStrategy, as well as the handler for
messages exchanged between sites. The canvas also em-
beds other functions whose meaning is intuitive. Key to this
canvas is the ChooseStrategy function which implements
the logic related to a specific quorum system (i.e., grid, hi-
erarchical etc.). In other words, only the ChooseStrategy
must be changed in order to implement a different quorum
system. The site requesting a quorum starts the algorithm
calling the function GetQuorum and passing it an interval
representing the whole key space. GetQuorum calls the
ChooseStrategy function. ChooseStrategy splits the given
interval in various subintervals and returns only those that
will form the quorum. Then, GetQuorum tries to obtain a
grant on the subintervals returned by ChooseStrategy. This
is done via multiple calls (one for each subinterval) to the
Acquire function that simply sends a GETQUORUM mes-

sage to the first key of the subinterval passed as parameter
and waits for the corresponding response. When the site
responsible for a key k receives a GETQUORUM[interval]
message sent to key k, it tries to obtain a grant on interval;
if interval is a subset of the key space controlled by that
site, denoted as MyKeyspace, then the site locks interval,
otherwise a distributed recursive call to GetQuorum must
be done in order to lock on interval.

Function name: GetQuorum
Input: An interval interval - Output: true or false
List← ChooseStrategy(interval)
for each i ∈ List

if ¬ Acquire(i)
return false

return true

Function name: Acquire
Input: An interval interval - Output: true or false
send GETQUORUM[interval] to FirstKeyOf(interval)
wait for message from FirstKeyOf(interval)
if message = ACK[interval]

return true
else

return false

Function name: handler for GETQUORUM messages
Input: An interval interval and a key k from which the message
was received
if interval ⊆MyKeyspace

if ¬ IsLocked(interval)
Lock(interval)
send ACK[interval] to k

else
send NACK[interval] to k

else if GetQuorum(interval)
send ACK[interval] to k

else
send NACK[interval] to k

Figure 1. A general algorithm for the imple-
mentation of quorum systems on DHT-based
P2P networks

The Notion of Latency. Keys forming a quorum can be
computed either locally at a single site (i.e., in a central-
ized way) or in a decentralized manner. This influences
ChooseStrategy’s implementation. In the first case, the site
requesting the quorum actually computes locally the whole
key set forming the quorum. In the latter case, the quorum
is computed in a decentralized fashion, in which several
sites contribute to compute this set, i.e., the site request-
ing a quorum actually “delegates” other sites for this pur-
pose (this delegation happens recursively). The latency of
a quorum actually represents the longest sequence of sites



that must be contacted to obtain a grant on a key for that
quorum. The longer is this sequence, the higher number of
messages is sent to obtain a quorum. On one hand a cen-
tralized computation of the quorum keys presents generally
a high degree of parallelism (i.e. low latency, O(logN));
on the other hand, it leads to high quorum acquisition costs
because for each key a lookup operation is issued. A de-
centralized computation of the quorum keys (as described
in the next sections) tries to reduce the quorum acquisition
cost introducing a delegation mechanism. The delegation
mechanism enables to amortize the cost of a message across
many keys. That is, a message from the requester to one of
its fingers is not only useful to lock a single key k, but it
is also useful to obtain all the keys belonging to the quo-
rum with a higher value than k. However, delegation might
increase the latency. The potential tradeoffs between the
acquisition cost and latency will be analyzed in Section 6.

5 Layered vs. Integrated approach

There are two possible implementations of the previ-
ously introduced general algorithm: layered and integrated.
In the integrated approach the generic algorithm exploits the
information contained in the finger table of a site. In the lay-
ered approach, the generic algorithm is built on the top of
the standard interface provided by the underlying P2P sys-
tem. As a consequence, in this approach the algorithm does
not have access to any internal information of the DHT. In
this section we instantiate the generic algorithm for three
quorum systems, namely grid, HQC and farsighted, using
both layered and integrated approaches.

5.1 Layered Protocols

Grid Quorums. To implement a grid quorum system on
top of a P2P system we proceed in a straightforward way:
keys are organized, starting from key 0 to key 2m − 1, in a
rectangle-shaped grid with r rows and c columns, such that
r · c = 2m. The grid structure is shared among all sites
so, the quorum intersection property is guaranteed for any
chosen quorum starting from any key. When a site requests
a quorum, it selects the smallest key, k, that site is respon-
sible for. Assuming k is on the i-th row of the grid, that
site tries to obtain a grant from all the keys belonging to
row i, and a random single key for any row other than the
i-th. A centralized algorithm that builds grid quorums can
be instantiated on the generic algorithm of Section 4 by im-
plementing a ChooseStrategy function that simply returns
c + r − 1 intervals. The intervals correspond to an entire
row of the grid and one key for any other row. More specif-
ically, c intervals contain one key each corresponding to the
range [(i − 1) · c, . . . , (i · c) − 1] (actually the i-th row of
the grid). The remaining r − 1 intervals contain also one

key each, randomly chosen from the remaining rows. In
the following we denote such an algorithm as Grid Quorum
Consensus (GQC).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[0-15]

[0-3] [4-7] [8-11] [12-15]

0

4

8

12

1

2

3

5

6

79

10

11

13

14

15

Figure 2. A decentralized hierarchical quorum
over 16-key space

Hierarchical Quorums. As mentioned in Section 2, the hi-
erarchical quorum consensus (HQC) consists in a hierarchi-
cal organization of the sites into a tree of degree d, in which
sites (keys) are the leaves. Although the optimal quorum
size for HQC is obtained with a tree of degree 3, we will
use d = 4 to simplify the matching between key intervals
defined by the tree and the key space size, 22x = 2m. In
HQC a quorum is formed recursively by selecting a major-
ity of children at the first level and then selecting recursively
majority in each of the selected children until the leaves are
reached. Let us point out that a child at a certain level of
the hierarchy is directly mapped to a subinterval of the key
space. Therefore, when a majority of children are chosen, it
is actually being decided which underlying intervals of the
key space are being selected as shown in Figure 2 for a 16-
key Chord ring. In this figure black dots represent a HQC
quorum. A centralized approach for the implementation of
HQC would consist in selecting one quorum at the requester
site and obtaining a grant for each key in the selected quo-
rum. The ChooseStrategy function that implements this ap-
proach is straightforward: it simply recursively walks down



the hierarchy choosing each time three children out of four
until the leaf level is reached. Each key selected at this fi-
nal stage is returned by the function as a different interval.
We denote such algorithm as Centralized Hierarchical Quo-
rum Consensus (C-HQC). HQC can be also implemented
by computing quorum keys in a decentralized manner. In
the following we refer to such algorithm as Decentralized
Hierarchical Quorum Consensus (D-HQC). As in C-HQC,
the requester in D-HQC selects three children (key subinter-
vals) out of four, but only for a single level of the hierarchy.
Then, a message with each selected interval is sent to the
first key of that interval. The site responsible for that key
will walk down one more step in the hierarchy. The decen-
tralized recursion stops when a site receives a message con-
taining an interval which is actually a subset of the portion
of the key space the site is responsible for. Therefore, the
implementation of ChooseStrategy for D-HQC boils down
to the selection from the given interval of three randomly
chosen subintervals out of four. For example, let us as-
sume that key 0 is the requester key (Figure 2). The first
iteration of the algorithm occurs in ChooseStrategy at the
site responsible for key 0 and works on interval [0 − 15].
ChooseStrategy subdivides the interval into four subinter-
vals and chooses three of them: [0−3], [4−7] and [12−15].
The next iteration occurs in parallel on the sites responsible
for the first key of each subinterval.

5.2 Integrated Protocols

Smart Grid Algorithm. The Smart Grid Quorum Consen-
sus (S-GQC) algorithm is an enhanced version of GQC that
exploits the knowledge contained at the DHT routing layer
(i.e., finger table and the interval of keys the site is respon-
sible for). More specifically, ChooseStrategy of S-GQC im-
plements the following two points for selecting, in a decen-
tralized way, the row and the remaining keys which form
the quorum:

• Selection of the best row to be locked based on the
keys the requesting site is responsible for. If the site
is responsible for the keys of an entire row (or more
than one), that row is selected, otherwise the next row
is selected with respect to the one containing the first
key the site is responsible for.

• The requesting site chooses a key in the row following
the one fully locked, possibly among those contained
in the site’s finger table. Moreover, the site also del-
egates to the site responsible for the chosen key the
locking of a key in the next row.

This step is repeated until a key is locked in each row.
As an example, let us consider Figure 3 where a square

grid is represented over a 16-key Chord ring. This figure

0 1 2 3

4 5 6

8 9 10 11

12 13 14 15

7

0

4

8

12

1

2

3

5

6

79

10

11

13

14

15

Site B Site A

Site C

Site D

Figure 3. A 4 × 4 grid quorum over 16-key
space

also points out the finger tables at each site representing
fingers as arrows. Let site A (with key 5) be the request-
ing site. According to ChooseStrategy running at site A,
the row corresponding to interval [4 − 7] is selected. Then,
looking at the finger table site A selects a key in the row
following [4, 7]. Let 9 be this key and site B be the respon-
sible for this key. Finally, A starts in parallel to ask for
both a grant for key 9 and grants for keys in row [4 − 7]
to all the sites responsible for those keys. The latter action
is sequential in the sense that grants are acquired one after
the other. The choice for getting a grant from a key in row
[12 − 15] is left to site B (since it is responsible for key
9) and so on. Therefore, the latency will be given by the
longest sequence of contacted sites generated by the two
parallel actions. Specifically in the example of Figure 3 the
latency is 3 because site A can obtain grants for keys 9, 13
and 2 forwarding a message through sites B,C and D.

Farsighted Algorithm FQC algorithm employs (i) a tac-
tic over a 4 degree hierarchy (as defined in Section 3) and
(ii) the decentralized recursion used by D-HQC (see Section
5.1).

ChooseStrategy is in charge of dividing an interval into
subintervals and therefore, encapsulates the pattern selec-
tion for a given tactic. A pattern in FQC determines how
many intervals are selected at the current (outer) level and



Last key from which the pattern (3,3,2,0) can be applied

1st level

pair

(3, 3, 2, 0)

2nd level

pair

{

{ 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0-15 16-31 32-47 48-63

(0, 2, 3, 3)

Figure 4. Last key from which the (3,3,2,0) pattern is applicable

for each of these subintervals how many intervals at the next
(inner) level are chosen again. In doing the task of pattern
selection, ChooseStrategy faces a big issue: selecting the
most favorable pattern among those applicable. The set of
applicable patterns depends on the interval managed by the
site responsible for the requesting key. A pattern is applica-
ble from a key, if the following two conditions are verified:

• A quorum can be obtained from that key without re-
sorting to sites outside the interval. That is, only in-
volving sites responsible for keys within the interval.
For instance, to apply the pattern (3, 3, 2, 0) in a
256-key space to interval [0..255], the key must be lo-
cated in the first subinterval ([0..63]) at the first level
of the hierarchy because the pattern selects keys from
the first subinterval, and from there it is possible to
reach the second and third subintervals ([64..127] and
[128..173]) without resorting to lookups. Moreover,
the key can only be located in the first or second subin-
tervals ([0..15] or [16..31]) of the subinterval [0..63] in
order to reach 3 subintervals of that interval from that
key.

• The key should be located at a position in the key space
such that, at the next recursive steps of the quorum for-
mation, at least the minimal pattern in the tactic (i.e.
the one with lower lexicographical order) can be ap-
plied. Considering the previous example with a 256-
key space, if the value of the key is 31, from there it is
not possible to obtain a quorum recursively because it
is “too late” in that subinterval. If the patterns (3, 3, 2,
0) and (0, 2, 3, 3) belong to the tactic, the pattern (3, 3,
2, 0) can be applied if the first key of the site is smaller
than 22 (Fig 4). This allows to use the minimal pattern
((0,2,3,3)) in the rest of the levels.

0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 5. Numbering scheme for inner and
outer levels

In order to calculate when a pattern is applicable to a key
and interval, intervals at a level of the tree are numbered
from left to right starting from 0. The same procedure is
done at the next level (Figure 5)

As a consequence, one of the main tasks of ChooseStrat-
egy is to calculate the last key from which a pattern is appli-
cable for a given interval. In order to gain this knowledge,
it is necessary to know the latest outer and inner intervals,
(o, i), at which that pattern is applicable. In the previous
example with only patterns (3, 3, 2, 0) and (0, 2, 3, 3) in the
tactic, for pattern (3, 3, 2, 0), (o, i) = (0, 1), which means
that the last key to which the pattern (3, 3, 2, 0) can be ap-
plied is in the first interval (0) and in the second subinterval
(1) within that interval. The minimal pattern must also be
considered in order to check the applicability of a pattern.
The minimal pattern enables the latest start in the subse-
quent levels. So, the latest outer and inner intervals for the
minimal pattern of a tactic, (omin, imin), are also needed.
Assuming a complete tree with degree 4, and that the key
space starts with key 0 on the left most leaf and finishes
with key 22m on the right most leaf, when a quorum is re-
quested in an interval, it is possible to know the level of the
tree (l) that corresponds to that interval. Using that level
it is possible to know the last key from which a pattern is
applicable at level l (where j iterates downwards to 1):

lastkey = o·22l
+i·22l−1

+
1∑

j= l−2+1
2

omin · (22)
2j

+ imin · (22)
2j−1

The first term of the sum represents the number of keys
(leaves) before the latest outer interval. The second one rep-
resents the number of keys before the latest inner interval.
And the third one represents the number of leaves that can
be skipped before the subsequent pairs of intervals, if the
minimal pattern is applied. In a space of 256 keys and the
[0..255] interval, the pattern (0, 2, 3, 3) would be applicable
from key 0 to key 120.

If the starting key (k) of the interval under consideration
is not zero, the interval in which the pattern is applicable is
[k, k+ lastkey−1]. It should be noted that in the first level
of the tree, there is circularity, in the sense that any of the
subintervals could be numbered 0 as far as the next on the



right is numbered 1 and so on. However, this does not hold
for the rest of the levels.

Once the selection of the pattern has been done for the
current level, ChooseStrategy applies a first local recursion
for those subintervals for which a pattern is applicable; re-
cursion for the other subintervals is delegated to other sites
(as in D-HQC). Preference is given to those sites present in
the local finger table.

6 Layered vs. Integrated Approach: a Per-
formance Evaluation

We have implemented the algorithms proposed in pre-
vious sections over a Chord network simulator we built.
The simulator routes messages among simulated sites while
keeping track of performance indices. We ran tests simu-
lating networks with various key space sizes (of the form
22x) up to 2128. We considered different (and large) key
spaces to test different realistic Chord deployments. Dur-
ing a simulation the network is first populated with p sites
using a uniform distribution over the whole key space. The
uniform distribution actually simulates the correct behav-
ior of the hash function used in Chord to map sites in the
key space. Then, a quorum request is simulated on a key
chosen at random. This request generates messages that are
routed across some of the sites. A monitor component keeps
track of the different performance metrics during the simu-
lation to enable the comparison among the different algo-
rithms. We measured the quorum acquisition cost (number
of exchanged messages), the number of sites involved in the
quorum formation (sites in the quorum plus sites only de-
voted to DHT routing) and the latency, varying the number
of sites participating in the DHT. Plots in Figure 6 report
the results. Further experiments and plots are reported in
[2]. Each point in the plots represents the average value of
the results obtained from the acquisition of 100 quorums.
The variance was always within 3% so, it is not reported in
the plots.
Evaluation of the quorum acquisition cost. We first de-
termined experimentally the optimal grid configuration for
the network used in the experiments (1000 sites and 230

keys). We obtained that, contrarily to classical grid quo-
rum systems, S-GQC reaches its optimal performance with
a non-square grid (25 × 225). Tests for Figure 6 have been
computed using this optimal grid configuration. The dashed
curves, reporting results for GQC and S-GQC, clearly show
the impact of the usage of information internal to the P2P
network (key intervals and finger tables). There is indeed
a performance gap in the quorum acquisition cost between
the layered and the integrated approach of approximately 3
orders of magnitude (Figure 6(a)). The number of involved
sites, i.e. the percentage of sites with locked keys, for S-
GQC also remains below that of GQC (Figure 6(b)). Fig-

ure 6(a) also shows the quorum acquisition cost for three
different hierarchical quorum systems, namely C-HQC, D-
HQC and FQC (using the pattern-set 4-1-1-1). All plots
show an exponential growth ratio of the quorum acquisition
cost with respect to the number of sites. As expected C-
HQC exhibits the worst acquisition cost performance even
though the number of sites involved in quorum formation is
in between D-HQC and FQC as shown in Figure 6(b). The
gap with D-HQC is due to the fact that D-HQC contacts
sites that are used only for delegation purposes. FQC shows
better performance with respect to D-HQC for both perfor-
mance metrics thanks to its strategy for choosing the keys to
be locked. Finally, the distance between D-HQC and FQC
in Figure 6(a) gives a clear idea of the performance gap be-
tween layered and integrated approaches in hierarchy-based
quorums. Since the main target of the proposed techniques
is a hierarchical DHT such as Crescendo [7], the quorum
system will be defined on a subring. A Crescendo subring
(a Chord ring itself) will contain a few thousands of sites
for a large network of a few millions of sites (it depends on
the actual hierarchy used). This means that the segment of
the curves that are of practical interest would be those in the
interval 1000-10000.

A comparison between S-GQC and FQC. Figure 6 shows
that S-GQC performs better than FQC with respect to the
number of involved sites and the quorum acquisition cost.
S-GQC is actually very well suited to P2P systems as it ex-
ploits the fact that routing information on DHT is more ac-
curate in the proximity of a site. The great majority of the
keys that must be locked by S-GQC in the optimal setting
lies in a single row (i.e., they are contiguous). This means
that a site on that row always tries to get a grant from a
key covered by the following site in the network ring. This
implies that in S-GQC each delegation step involves only
sites to which at least a grant on one of their keys is re-
quested. The set of keys constituting an FQC quorum does
not have this contiguity. Therefore, it is possible that sites
are involved in the quorum formation process only for del-
egation purposes (no grant on one of their keys is requested
to them).

Latency Evaluation. It can be easily devised that layered
algorithms have a latency which falls in a range of values.
More specifically C-HQC and GQC have a latency ranging
between 1 and 30. This is due to the fact that both algo-
rithms, for each key that has to be contacted, spend from 1
up to log(n) routing hops. The latency for D-HQC stems
from the depth of the hierarchical tree used to build the
quorum. Each step in the hierarchy can take up to log(n)
routing hops, therefore the latency for D-HQC can range
between 30 and 30 × 30. Figure 6(c) shows a comparison
between S-GQC and FQC (in their most favorable config-
urations) with respect to the latency. FQC shows a con-
stant latency that is equal to half of the depth of the used



1,E+00

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

1,E+09

10 100 1000 10000

Number of sites

Q
uo

ru
m

 a
cq

ui
si

ti
on

 c
os

t

C-HQC D-HQC FQC GQC S-GQC

(a) Quorum acquisition cost versus num-
ber of sites

0%

10%

20%

30%

40%

50%

60%

70%

80%

10 100 1000 10000

Number of sites

N
um

be
r 

of
 s

it
es

 in
vo

lv
ed

C-HQC D-HQC FQC GQC S-GQC

(b) Involved sites versus number of sites

0

1

10

100

1000

10 100 1000 10000

Number of sites

La
te

nc
y

FQC S-GQC

(c) Latency for various algorithms

Figure 6. Measures for a network of 230 keys

tree. Contrarily to layered algorithms, this number uniquely
identifies the latency, thanks to the fact that the delegation
mechanism is done between sites at one hop distance (typ-
ical behavior of the integrated approach). It can be also
pointed out that S-GQC does not scale as FQC with respect
to the latency. This is due to its low parallelism. S-GQC
latency is heavily influenced by the average number of keys
handled by each site as this has a great impact on the aver-
age number of sites forming a row. As an example, if we
consider the points in the plots that correspond to 1000 sites
the latency is around 30 for S-GQC, while FQS shows a
latency of log(230)/2 = 15. This means that, on the aver-
age, in that setting, FQC can obtain a quorum in half of the
time of S-GQC. This difference in time will increase with
the number of sites participating in the DHT.

7 Related Work

Quorum systems have been largely investigated in the
distributed systems literature. Several surveys and compari-
son studies exists revising the various possibilities for build-
ing quorums as well as their performance trade-offs [15, 9].
In the following we concentrate on realizations of quorum
systems based on P2P infrastructures. The idea of exploit-
ing an overlay network as the underlying infrastructure for
distributed systems is becoming more and more popular.
[19] presents a series of examples of applications that can
be realized in that fashion, including a quorum system. The
idea is to build a simple majority quorum by requesting mu-
tual exclusion access to a majority of the keys in the key
space. Authors suggest the usage of a DHT-based multicast
algorithm (such as [3]) for reaching all the required keys ef-
ficiently. However, building and maintaining such a multi-
cast tree introduces further overhead which adds to those of
DHT maintenance and quorum construction. The integrated
approach we propose in this paper exploits a technique for
dispatching the quorum requests to all the involved keys
resembling the broadcast algorithm for a generic DHT in-

frastructure presented in [6]. Here, the finger table is used
to forward messages to several nodes in parallel and main-
taining a log(n) bound on the latency of broadcasted mes-
sages. However, differently from our paper, the aim of this
algorithm is just to reach a certain number of keys, while
in our case the chosen keys have to form a quorum. The
same authors of [19] also propose in [12] algorithms and
techniques for building a quorum system over a basic DHT,
such as Chord. The idea is similar to that in [19]. More-
over, a random back-off technique is included in order to
maintain constant throughput when concurrency of requests
increases and subsequently there is a higher probability of
access conflicts. With respect to our paper, the problem of
efficiently gaining access to keys is not taken into account.
Moreover, our suite of integrated protocols is based on quo-
rum systems with smaller quorum sizes which require less
keys than majority. In [14] a scalable dynamic quorum sys-
tem supporting joins and departures of nodes is presented.
This paper presents the dynamic counterpart of the Paths
quorum system [15], Dynamic Paths, featuring low load,
high availability and efficient quorum construction. In par-
ticular, Dynamic Paths manages dynamic behavior of nodes
through DHT-like techniques borrowed from [13]. In other
words, rather that building the quorum over a separate DHT
layers, like we do, Dynamic Paths embeds management of
node joins and departures following an approach based on a
geometrical decomposition of a 2-dimensional space simi-
lar to CAN [16]. Another quorum system that exploits a ge-
ometrical CAN-like space is the d-space system presented
in [17]. d-space has the objective of improving the effi-
ciency of read operations, assuming they are more frequent
than writes. The quorum size is proved to be optimal for
read operations. Communication costs due to the DHT de-
ployment are not computed. Other approaches for gaining
consistency guarantees in P2P applications have been pre-
sented in [7, 8, 10]. In particular, in [10] a P2P architecture
for multiplayer gaming is presented, relying on a single (but
replicated) coordinator node for maintaining global shared



data, that in practice is a singleton quorum. Though a sin-
gleton quorum provides best latency and acquisition cost, it
obviously presents poor availability and/or consistency, as
confirmed by their own experimental results.

8 Conclusions

Even though P2P systems are characterized by indepen-
dent behavior of the participants, complex applications may
require rare, but unavoidable, concurrent access to shared
data. Quorum systems are a useful tool to obtain mutual
exclusion access on such data. In this paper we focused on
design principles, namely integration and delegation, that
should guide the construction of quorum systems and proto-
cols in DHT-based P2P systems. We introduced two novel
performance metrics, quorum acquisition cost and latency
to measure the performance of quorum systems in P2P sys-
tems. These metrics have a greater impact in a P2P than
previous metrics used for quorums in classical distributed
systems (like the quorum size). Then, several quorum algo-
rithms have been proposed which basically differ in the way
keys are selected to form a quorum. Quorum algorithms
which use a centralized selection mechanism (e.g., C-HQC
and GQC) exhibit a very high quorum acquisition cost. De-
centralized algorithms aim to reduce this cost exploiting the
notion of delegation to define the set of keys forming the
quorum (e.g., D-HQC, FQC and S-GQC). However, some
decentralized quorum algorithms suffer from a higher la-
tency. This fact points out an interesting tradeoff between
quorum acquisition cost and latency in some algorithms.
More specifically, the quorum algorithm that scales better
with respect to the quorum acquisition cost, namely S-GQC,
does not scale as well with respect to latency. All the other
algorithms show an opposite behavior. In particular, FQC,
a new quorum system introduced in this paper, exhibits a
constant latency while maintaining good performance with
respect to quorum acquisition cost. All quorum approaches
involve a number of sites higher than log(n) what can ques-
tion their scalability. However, by resorting to hierarchical
DHTs a quorum can be obtained over a fraction of the P2P
network. Currently we are working in applying principles
of delegation and integration to hierarchical grid to combine
its low quorum size with the flexibility and low latency of
FQC.

References

[1] E. Anceaume, R. Friedman, M. Gradinariu, and M. Roy. An
Architecture for Dynamic Scalable Self-Managed Persitant
Objects. In Proceedings of DOA 2004, 2004.

[2] R. Baldoni, R. Jiménez-Peris, M. Patino-Martı́nez,
L. Querzoni, and A. Virgillito. Dynamic quo-
rums for dht-based p2p networks. Technical re-

port, Uniersità di Roma “La Sapienza” - Uni-
versidad Politécnica de Madrid (UPM), 2005-
http://www.dis.uniroma1.it/ m̃idlab/articoli/BJPQV05techrep.pdf.

[3] M. Castro, P. Druschel, A. Kermarrec, and A. Rowston.
Scribe: A large-scale and decentralized application-level
multicast infrastructure. IEEE Journal on Selected Areas in
Communications, 20(8), 2002.

[4] S. Y. Cheung, M. Ahamad, and M. H. Ammar. The grid pro-
tocol: a high performance scheme for maintaining replicated
data. In Proceedings of the 6th International Conference on
Data Engineering, 1990.

[5] A. Datta, M. Hauswirth, and K. Aberer. Updates in Highly
Unreliable, Replicated Peer-to-Peer Systems. In Proceedings
of the 23rd International Conference on Distributed Comput-
ing Systems, 2003.

[6] S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi. Effi-
cient broadcast in structured peer-to-peer networks. In Pro-
ceedings of the 2nd International Workshop on Peer-to-Peer
Systems, 2003.

[7] P. Ganesan, P. K. Gummadi, and H. Garcia-Molina. Canon
in g major: Designing dhts with hierarchical structure. In
ICDCS, pages 263–272, 2004.

[8] P. Ganesan, Q. Sun, and H. Garcia-Molina. Adlib: A self-
tuning index for dynamic p2p systems. In ICDE, 2005.

[9] R. Jiménez-Peris, M. Patiño-Martı́nez, G. Alonso, and
B. Kemme. Are quorums an alternative for data replication.
ACM Transactions on Database Systems, 28(3), 2003.

[10] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer
support for massively multiplayer games. In Proceedings of
INFOCOM 2004, 2004.

[11] A. Kumar. Hierarchical Quorum Consensus: A New Algo-
rithm for Managing Replicated Data. IEEE Transactions on
Computers, 40(9), 1991.

[12] S. Lin, Q. Lian, M. Chen, and Z. Zhang. A practical dis-
tributed mutual exclusion protocol in dynamic peer-to-peer
systems. In Proceedings of the 3nd International Workshop
on Peer-to-Peer Systems, 2004.

[13] M. Naor and U. Wieder. Novel Architectures for p2p Appli-
cations: the Continuous-Discrete Approach. In Proceedings
of the 15th ACM Symposium on Parallelism in Algorithms
and Architectures, 2003.

[14] M. Naor and U. Wieder. Scalable and dynamic quorum sys-
tems. In Proceedings of the ACM Symposium on Principles
of Distributed Computing, 2003.

[15] M. Naor and A. Wool. The Load, Capacity, and Availability
of Quorum Systems. SIAM Journal of Computing, 27(2),
1998.

[16] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Application-level multicast using content-addressable net-
works. LNCS, 2233:14–34, 2001.

[17] B. Silaghi, P. Keleher, and B. Bhattacharjee. Multi-
Dimensional Quorum Sets for Read-Few Write-Many
Replica Control Protocols. In Proceedings of the 4th Inter-
national Workshop on Global and Peer-to-Peer Computing,
2004.

[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of ACM SIGCOMM,
2001.

[19] Z. Zhang. The power of dht as a logical space. In Proceed-
ings of the 10th International Workshop on Future Trends in
Distributed Computing Systems, 2004.


