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Abstract

Fault tolerance for middleware platforms has attracted much
attention in the last years. A proof of this increasing in-
terest is the recent publication of the FT-Corba standard.
Despite the research efforts in this direction, there are still
some open questions in this research area. One of them
is how to guarantee the determinism of the replicas in the
presence of multithreaded executions typical of middleware
platforms. Another open problem is to maintain the avail-
ability of a replicated server during recovery. In this pa-
per we extend previous work related to the deterministic
scheduling of multithreaded replicas with an algorithm for
online recovery.

1 Introduction

Availability has become an essential property for today’s
distributed applications which must continue running de-
spite site failures. Replication is a well-known technique
to achieve availability. A proof of the importance of repli-
cation is its inclusion in the recent FT-Corba specification
[24]. These research efforts have addressed how to imple-
ment active replication at the middleware level and more
particularly in a Corba environment (Eternal [21], AQuA
[8], Electra [19], Arjuna [20], OGS [12], Friends [9], FTS
[10]).

In order to provide a certain level of availability, it is
necessary to recover failed or partitioned replicas. The re-
covery of a replica consists in bringing its state up to date,
which it is usually accomplished by transferring the state
from an active replica. This recovery process implies sus-
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pending normal processing until the state transfer is com-
pleted. The duration of the recovery process depends on
the amount of data to be transferred. Since this data trans-
ference can be fairly large, the period of time to perform
recovery may be not affordable for applications with high-
availability requirements. Given that the system remains
unavailable during the duration of recovery, this kind of re-
covery contradicts the initial high-availability goal of repli-
cation. Therefore, a truly high-available system should be
able to recover failed replicas whilst the system is online,
that is, disrupting regular processing as minimally as possi-
ble.

To the best of our knowledge Eternal [22] is the only
FT-Corba implementation that deals with how to guaran-
tee replica consistency in the presence of non-determinism
such as multithreading. Some recent work has focused on
how to attain deterministic recovery in Eternal [23]. In this
approach an object is recovered by retrieving an up-to-date
state from a running object in quiescent state. This running
object waits until is in quiescent state and then transfers its
state to the recovering object. During the recovery process
the running object involved in recovery does not process re-
quests.

In this paper we propose an online recovery algorithm
for replicated transactional servers [15]. In our approach
the system does not wait until a replica is quiescent to start
recovery what results in a higher availability. The proposed
recovery protocol prevents service disruption by performing
the recovery of failed replicas in parallel with transaction
processing. The paper addresses how to cope with the non-
determinism introduced by the multithreaded execution typ-
ical of middleware platforms while online recovery is taking
place. Some recent papers have studied how to perform on-
line recovery in replicated databases [16, 17] at an internal
level [18] and at a middleware level [14]. However, in this



context deterministic scheduling of multithreaded compu-
tations is not an issue, since the only requirement is one-
copy-serializability.

The protocol exhibits two interesting features. First, work-
ing replicas do not wait for running transactions to finish be-
fore starting the recovery. And second, working replicas do
not delay new transactions until the recovery is completed.
An important aspect of the recovery protocol lies in that
it guarantees that all replicas, working and recovering, be-
have deterministically despite the multithreaded execution
of client requests.

The paper is organized as follows. First, we describe the
assumed system model in Section 2. Section 3 introduces
the deterministic scheduling algorithm that we will extend
with recovery. In Section 4 we present the recovery algo-
rithm. And finally, our conclusions are presented in Section
5.

2 Model

The system consists of a set of sites with persistent and sta-
ble storage connected by a network. Sites fail by crash-
ing (no Byzantine failures) and share the same environment
(disk space available, etc.). We do not consider the non-
determinism introduced by software interrupts. We assume
an asynchronous system extended with a possibly unreli-
able failure detector [6]. Sites communicate by exchanging
messages through reliable channels.

Sites are provided with a group communication system
supporting virtual synchrony [4, 7] with a primary compo-
nent membership [7]. We assume that communication is
based on a reliable and totally ordered multicast.

A transactional replicated server provides a set of ser-
vices that clients can invoke. A replicated server consists of
a group of identical replicas (i.e., with the same code and
data).

The interaction with servers is conversational [11, 26]
and synchronous. That is, a client remains blocked after in-
voking a server until it gets the reply from the server. A
conversational interaction is an interaction in which a client
can issue service requests that refer to earlier requests. A
replicated server models a business process that spans mul-
tiple client requests and has in-memory conversational state.
Stateful session beans of Enterprise Java Beans (EJBs) are
an example of conversational interaction, where requests
correspond to method invocations with this kind of inter-
action. A server decides what a client is allowed to do at a
point of the interaction, and knows which results have been

produced so far.
A new server thread is created at each replica for each

client transaction. A server thread executes an instance of
the server code and only processes requests from that client
transaction. Server threads are created when the first call
from a transaction is processed at a server. All server threads
of a replica share the data of the replica. A server thread ac-
cepts requests explicitly, that is, either accepts a request for
a particular service (e.g. like Ada rendezvous [1]) or ac-
cepts non-deterministically a request among a specified set
by means of selective reception (e.g., like the select state-
ment of Ada [1] or the socket API). An example of selective
reception is a server willing to process a request to service
e1 or e2 (Fig 1). If there are no requests for any of the ser-
vices, the server thread blocks until a request is received for
any of them. If there are requests for both services, one of
them is selected and then processed.

select
accept e1(params.) do

�� ������� ������� ��

end e1
or

accept e2(params.) do
�� ������� ������� ��

end e2
end select

Figure 1: An example of select statement

Figure 2 shows a two-replica server with two transac-
tions, T1 and T2. At each replica there are two server
threads, one per client transaction. Both server threads have
the same code and only process requests (e1, e2) from
their respective client transactions. Server threads at each
of the replicas, first process a request to service e1, and then
a request to service e2. Concurrency control mechanisms
(read/write locks) are used to guarantee data consistency.

A replicated server can issue requests to other servers
(that is, it can also act as a client). These requests are fil-
tered to avoid performing a request multiple times (as many
times as available replicas there are at the caller). Therefore,
the effect is as if only one request is made. The reply is sent
back to all the replicas. Since request submission is block-
ing and request acceptance explicit, there are not reentrant
invocations.



Figure 2: Interaction with a transactional replicated server

3 Deterministic Scheduling

A scheduling is used to guarantee determinism of replicated
transactional servers during normal operation. The recovery
protocol is integrated with the scheduling protocol. In this
section we summarize the assumed deterministic schedul-
ing algorithm. For further details, the reader is referred to
[15, 13]

The sources of non-determinism can be classified as ex-
ternal and internal. The external environment consists of
all the messages a replica receives. These messages can
be either client requests or transaction management mes-
sages of the underlying transactional system. This source
of non-determinism can be removed by processing requests
and replies in the same order at all replicas. In order to ex-
ecute operations in the same order, replicas need to receive
the same set of messages and process them in the same or-
der. This can be achieved using reliable totally ordered mul-
ticast.

Replicas also receive transaction management messages.
These messages must also be taken into account to achieve
determinism. In particular, transaction termination (abort,
prepare or commit) messages can release locks that will un-
block threads (transactions) blocked on those locks. There-
fore, transaction management messages must also be totally
ordered to guarantee replica determinism.

However, providing replicas with the same external en-
vironment is not enough to guarantee the determinism of
multithreaded replicas. Multithreading is itself an internal
source of non-determinism. Two replicas � and � receiv-

ing two conflicting requests �� and �� (let us assume they
write the data item �) in the same order can schedule the
associated threads in different order. If replica � sched-
ules first request ��, the associated transaction will obtained
the write lock for the item �, whilst in replica � the same
will happen for ��. This will produce a different serializa-
tion order of the transactions corresponding to � � and ��

thereby, violating replica determinism. For this reason, it is
necessary to provide replicas with a deterministic scheduler
which ensures that all replicas will perform the same thread
scheduling.

Total ordered requests and deterministic scheduling do
not suffice to ensure replica consistency. This is due to total
order does not guarantee that all replicas receives messages
at the same instant. This means that two replicas could
decide to perform different scheduling steps. At a given
scheduling point, a replica may have some queued mes-
sages, while another one has no messages. The replica with
messages could decide to process the first pending mes-
sage, whilst the one with no messages can only decide to
schedule one of its ready threads. That situation compro-
mises the replica consistency. To prevent this situation, a
replica will process a new message when it is the only way
to progress (i.e., all the threads of the replica are blocked or
there are no running threads). Therefore, when a replica has
to choose between processing a new message or scheduling
a ready thread, it will always do the latter, removing the
non-determinism.

The above solution is implicitly using two message queue



levels. The external level queue corresponds to the commu-
nication layer. There is one external queue at each replica.
The internal level queues correspond to the services pro-
vided by the server. Each server thread has an internal queue
per service. Hence, a message in one of these queues has
been originated by the associated transaction and targeted
to the corresponding service.

4 Online Recovery

A replicated transactional server is available as far as there
is a primary component. The primary component can pro-
cess transactions while some replicas have crashed or are
partitioned. Those unavailable replicas should rejoin the
primary component in order to maintain the availability of
the server when the network connectivity is reestablished or
crashed replicas are restarted. Since the primary component
might have processed transactions in the meantime, recov-
ering replicas must perform a recovery process before pro-
cessing new requests. In this process a recovering replica
will synchronize its state with the one of the replicas in the
primary component (working replicas). In what follows, for
the sake of simplicity we will assume that there are not over-
lapping recoveries (i.e. recoveries that start while a recovery
process is underway), although we will consider simultane-
ous recoveries (i.e., recoveries that start in the same view
change, for instance, resulting from a partition merge).

One way to implement recovery (state transfer) consists
in sending all server data to recovering replicas during the
view change [5, 2]. Using this method, it is necessary to ei-
ther delay the view change until all active transactions (in-
transit transactions) have finished (i.e. the system is in a
quiescent state), or include in the state to be transferred in-
formation about the exact state of each transaction (program
counter, stack, local memory, etc.) to resume the execu-
tion of in-transit transactions threads in the recovering repli-
cas. The former solution delays the recovery until in-transit
transactions have finished. The latter solution is technically
quite complex, and highly dependant on both hardware and
operating system. Additionally, in both solutions process-
ing is suspended during the state transfer, which might take
a long time to complete (if the amount of data is large), what
also results in a considerable loss of availability.

In order to keep a high degree of availability during re-
covery, it is desirable to perform recovery as less intru-
sively as possible. That is, transaction processing on work-
ing replicas should be disrupted as minimally as possible by
recovery. In this section, we present how online recovery

can be performed in a non-intrusive way, preserving deter-
minism and integrated into a deterministic scheduling algo-
rithm [15]. We first present how recovery can start with-
out both waiting for in-transit transactions to finish nor exe-
cuting and transferring the whole state of in-transit transac-
tions. Then, we show how to avoid transferring most of the
server data during the view change and therefore, reducing
the unavailability period.

4.1 Dealing with In-Transit Transactions

State transfer can be performed during the view change for
all data that are not write-locked by in-transit transactions.
After obtaining those data, recovering replicas can start pro-
cessing new requests that do not conflict with in-transit trans-
actions. However, there is no a priori knowledge (before
execution) about which transactions conflict. It could hap-
pen that a recovering replica schedules a new transaction
that locks some data. At the working replicas, an in-transit
transaction might be scheduled locking the same data be-
fore the new transaction. Therefore, just transferring non-
locked data by in-transit transactions compromises replica
determinism. A recovering replica needs to know when in-
transit transactions are scheduled, the effects after their pre-
emption (i.e., requested locks, ...), and the final value (or
post-image) of updated data at commit time. Based on this
information, recovering replicas are not required to run in-
transit transactions neither to wait for in-transit transactions
to finish to transfer the server data.

A recovering replica, in order to serialize transactions
properly, also needs to know which locks were held and re-
quested by each in-transit transaction when the view change
took place. It will also need the value of read locked data,
since new transactions can read them. That information is
transferred in the view change.

Since in-transit transactions are not run at recovering repli-
cas. After the preemption of a server thread of an in-transit
transaction at a working replica, recovering replicas need to
know about the locks acquired by that transaction, and the
status of this thread (ready, blocked on a lock, blocked on
a service, blocked on a reply, finished, prepared, aborted).
This means that during recovery, in-transit transactions will
follow an approach similar to the leader-follower approach
[3] of Delta-4 [25].

View change messages (with more replicas) are treated
as any other messages. That is, view changes are queued in
the external message queue and they are not processed until
they are extracted from that queue. At a working replica,
when the scheduler extracts a view change message from
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the external queue incorporating new sites, the recovery starts.
The processing of the view change consists in transferring
the replica state to the recovering replicas and marking all
active transactions as in-transit (Fig. 3.b). The state consists
of the server data that are not write locked and the scheduler
data structures: the external queue, the thread table, the se-
quence of ready threads in the ready thread queue, and the
lock queues. When this information is delivered at a recov-
ering replica, it is copied in the corresponding data struc-
tures (Fig. 3.b), except the sequence of ready threads. For
each in-transit transaction, a thread (ghost server thread) is
created to represent it (Fig. 3.c). The recovering replica
traverses the sequence of ready threads it has received. For
each thread in this sequence, it inserts in its ready thread
queue (initially empty) the correspondingghost thread. There-
fore, recovering and working replicas will schedule transac-
tions in the same order.

Whenever a ghost server thread is scheduled, the recov-
ering replica will wait for the effects of the activity of the
server thread from a working replica (Fig. 4.a). That is,
locks acquired by the in-transit transaction, and the current
state of the server thread (ready, blocked waiting a request,
a reply or a lock, aborted). Schedulers of working replicas
will multicast this information to recovering ones just after
the in-transit transaction server thread is preempted (Fig.
4.b). Those recovery messages multicast by working repli-
cas are filtered by the underlying communication system
guaranteeing that only one is delivered as it happens with
regular messages. All working replicas perform the same
recovery actions to keep determinism and at the same time
make the recovery process fault-tolerant. Messages notify-
ing actions performed by in-transit transactions are consid-

ered urgent and are not queued in the external queue. In-
stead, they are delivered to the ghost server thread immedi-
ately. In this way, it is guaranteed that in-transit transactions
are scheduled at a recovering replica in the same way as in
working replicas (Fig. 4.c). Since locks are requested and
released in the same order, the serialization order will be the
same in all the replicas.

When a working replica receives a prepare message for
an in-transit transaction, it sends the updates of the trans-
action to the recovering replicas. Recovering replicas will
also receive the prepare, and commit (abort) messages for
in-transit transactions. When a recovering replica receives a
prepare message for an in-transit transaction, it checks if it
can commit the transaction. In that case, it waits for the
transaction updates (post-images) from working replicas.
The reception of the updates is not a scheduling point and
the message is delivered immediately, therefore all replicas
will prepare (and commit) the in-transit transactions at the
same logical instant. If the in-transit transaction commits,
the updates will be installed. Later, another transaction at
a recovering replica can read data written by the in-transit
transaction.

If an in-transit transaction aborts, working replicas will
send the transaction data pre-images to recovering replicas.
Recovering replicas will install those pre-images to recover
the former values of the data. Again, this message is a re-
covery message (and therefore, urgent) and its reception is
not a scheduling point.

The advantage of this solution is that recovering replicas
can start processing transactions without delaying the view
change until in-transit transactions have finished nor exe-
cuting the whole code of in-transit transactions. The price
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to be paid is that a message is sent each time an in-transit
transaction is scheduled.

4.2 Increasing Availability during Recovery

Servers might hold a fairly large amount of data, conse-
quently, transferring all sever data during the view change
can be a lengthy operation. In order to perform this data
transfer less disruptively, data can be transferred progres-
sively in a sequence of steps. This progressive recovery en-
ables transaction processing in parallel with recovery, there-
fore minimizing the duration of the view change and the as-
sociated unavailability period, compared to a non-progressive
recovery that stops processing until the whole state is trans-
ferred.

The only data that are sent to recovering replicas during
the view change are in-transit transactions read-locked data.
In order to obtain a snapshot of the server data at working
replicas and to avoid the access of transactions to data that
has not been transferred yet to recovering replicas, all repli-
cas, working and recovering, set write locks (named recov-
ery locks) on all data not locked by in-transit transactions
(Fig. 5.a) as part of the view change processing.

The scheduler of all the replicas, working and recover-
ing, creates a recovery thread to perform recovery in par-
allel with transaction processing (Fig. 5.b). This thread is
scheduled as any other thread. At a working replica, the
recovery thread is in charge of sending the server data to
recovering replicas. Each time this thread is activated at a
working replica, it sends some data and waits for its delivery
(Fig. 5.c). Upon its delivery (Fig. 5.d) the working replica
releases the recovery lock (Fig. 5.e).

At a recovering replica, the recovery thread just awaits
the reception of this message. Upon reception of this mes-
sage (Fig. 5.d), the recovery thread updates the server data
accordingly (Fig. 5.e) and releases the corresponding re-

covery locks (Fig. 5.f). When a working replica processes
that message, it also releases the recovery locks. Only the
reception of recovery data is a scheduling point, thereby all
the recovery threads go through the same scheduling points,
despite the differences between the code of working and re-
covering replicas.

Since, the only action that affects determinism is the log-
ical instant at which recovery locks are released, and this
instant is the same at all replicas thanks to the total order,
determinism is therefore guaranteed. Furthermore, work-
ing and recovering replicas synchronize the logical instant
at which transactions are allowed to access data being trans-
ferred.

With this recovery protocol transactions are not delayed
until all the data are transferred. Instead transactions are
allowed to progress as far as the data they access have been
already transferred to the recovering replicas.

5 Conclusions

We have presented an online recovery algorithm for repli-
cated transactional servers. This recovery algorithm is used
in conjunction with a deterministic scheduling algorithm
that ensures replica consistency. The recovery algorithm
enables to process client requests in parallel with recov-
ery, what increases server availability during recovery. This
contrasts with traditional approaches in which the server
should wait until pending transactions have finished to start
recovery.
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