Exception Handling and Resolution for
Transactional Object Groups*

Marta Patifio-Martinez!, Ricardo Jiménez-Peris' and Sergio Arévalo?
)

1 School of Computer Science
Technical University of Madrid (UPM)
28660 Boadilla del Monte, Madrid, Spain
{mpatino,rjimenez}@fi.upm.es
2 Escuela de Ciencias Experimentales
Rey Juan Carlos University
28933 Mdstoles, Madrid, Spain
s.arevalo@escet.urjc.es

Abstract. With the advent of new distributed applications like on-
line auctions and e-commerce, the reliability requirements are becoming
tighter and tighter. These applications require a combination of data con-
sistency, robustness, high availability and performance. However, there
is no single mechanism providing these features. Data consistency is pre-
served using transactions. Robustness can be obtained by foreseeing and
handling exceptions. Objects groups can help in increasing the availabil-
ity and performance of an application. In order to attain the growing
demand of higher levels of reliability it is necessary to integrate these
mechanisms with a consistent semantics. This article addresses this topic
and studies the role of exceptions in this context.

1 Introduction

With the increasing importance of new distributed applications such as on-line
auctions and e-commerce, stronger reliability guarantees are required. These
applications need availability, data consistency and high throughput. Traditional
reliability techniques by themselves, like transactions or group communication,
only provide a subset of these properties. With the integration of these techniques
is possible to satisfy the surging need for higher levels of reliability.

Group communication [2,10] is one of the basic building blocks to build
reliable distributed systems. Although, group communication primitives were
proposed in the context of groups of processes, they have been integrated with
the object oriented paradigm [15,17,8,16] resulting in what has been named
object groups.

A group of objects is a set of distributed objects that share the same interface
and behave as a single logical object. Clients interact with object groups as with

* This work was partially supported by the Spanish Research Council, CICYT, under
grant TIC94-C02-01 and the Madrid Regional Research Council (CAM), contract
number CAM-07T/0012/1998.

regular objects. Transparently to the client, invocations are multicast to all group
members. Object groups have traditionally been used to increase either system
availability or performance. If all the group objects are exact replicas, object
failures can be masked. On the other hand, distributing a method execution
among the group objects can increase performance.

Transactions [6] provide data consistency in the presence of failures and con-
current accesses. Transaction properties have become crucial for building reliable
applications. Their use has spreaded from databases to a more general setting,
namely distributed systems. The importance of transactions has been recognized
in the CORBA object transactional service (OTS) [19], Java transaction service
(JTS) [26], and Enterprise Java Beans [25] standards. But, also several general
purpose programming languages and libraries have incorporated them, such as
Avalon [4] and Arjuna [24].

Our research has been motivated by the need to provide a consistent inte-
gration of these mechanisms. In our proposal, clients can enclose a set of group
invocations within a transaction to preserve their atomicity. Object group meth-
ods can be executed as transactions. In this way, object consistency is guaranteed
in the presence of failures and concurrent accesses.

In this context the semantics of exceptions need to be precisely defined.
Exception handling plays a key role in our approach. First, the abort of a trans-
action is notified by means of an exception. Second, exceptions have been in-
tegrated in the context of transactions acting on groups of objects, providing
forward (exception handling) and backward (transactions) recovery to guarantee
data consistency. As the nature of object groups is concurrent several exceptions
can be raised concurrently. Concurrent exception resolution is provided to no-
tify the abortion of the corresponding transaction with a single and meaningful
exception.

This article concentrates on two main issues. First, it is discussed how forward
and backward recovery provided by exceptions and transactions, respectively,
have been integrated. And second, it is shown how to deal with concurrent
exceptions within the context of transactional groups.

The rest of the article is organized as follows. Next section describes the
features of transactional object groups. Section 3 discusses exception handling
in this framework. Section 4 proposes linguistic support for our exception model.
Implementation issues of this exception model are presented in Section 5. Finally,
we compare our proposal with related work and present our conclusions.

2 Transactional Object Groups

2.1 Object Groups

An object group can be considered a distributed implementation of a class.
Members (objects) of an object group share the same interface (the one of the
class) and can be located at different sites of a network. Method invocations
are reliably multicast to all the group members. Reliable multicast messages

are delivered to all the group members or none of them. This property helps
to keep the consistency among group members, as all of them will process the
same method invocations. Multicast is also virtually synchronous [1], that is,
membership (view) changes are delivered at the same logical instant at all the
members. This means that the members that transit from one view to the next
one have processed the same set of method invocations before the view change.
Therefore, the programming of reliable object groups is simplified.

We distinguish two kinds of object groups based on their functionality: repli-
cated and cooperative object groups.

Replicated object groups (replicated groups to abbreviate) provide hardware
fault-tolerance. They implement active replication. That is, all the objects pro-
cess each method invocation. In a replicated group all the objects are exact
replicas. They have the same state and deterministic code.

Objects of a replicated group behave as a state machine [23]. Method in-
vocations are reliable multicast and also total ordered [10] to guarantee that
behavior. Total order means that all the members of a group receive method
invocations in the same order. All group members start from the same state
and process the same method invocations in the same order. This feature to-
gether with the restriction of not allowing concurrency within methods ensures
the determinism of replicated groups [12]. If each object of a group is placed
at a different site, the group can tolerate up to k — 1 site failures, being k the
number of objects in the group. Therefore, the distribution and replication of
objects is used to increase the availability of a logical object. For instance, let s
consider a name service that maps services to servers in a distributed system
(e.g., CORBA). This service is critical in the sense that when it is not available,
clients cannot contact the servers as they cannot find out their location, and
the system blocks. Replicating the name server object prevents this situation,
providing the required availability.

Replication is transparent both in front of clients and servers. Clients of
a replicated group invoke group methods as if the object were non-replicated.
Since all the group members have the same state and code, they will produce the
same answers, therefore a single answer is returned to group clients (Fig. 1.b).
Replicated groups can invoke other objects. That is, they can act as clients.
When a replicated group invokes another object (replicated or not), duplicated
requests must be avoided. In our approach only one method invocation takes
place (Fig. 1.c) to preserve the single object behavior of the group. Answers are
returned to all group members. To our knowledge only GroupIO [7], a group
communication library, implements such a behavior.

On the other hand, in a cooperative object group (or cooperative group) dis-
tribution is used to increase the throughput of the system. The state of an
object is distributed among the group members and thus, method invocations
are executed in parallel, decreasing latency. Hence, the state of the objects of a
cooperative group can be different. Even method implementation can be differ-
ent. For instance, a cooperative group can represent a bank and each member
can represent a branch of a bank. In this case, the state of the objects is different.

Invocation Invocation Invocation

* Invocation

Answer Answer

Invocation

Client /77
Results ggryer

Results
CemH Client < Results

a) Cooperative group b) Replicated group c) Invocation from a
invocation invocation replicated group

Client 'nvocation Server

—

>
5
7]
H
]
]

010

o/
@/@\e

Fig. 1. Interaction with object groups

The group can provide an operation to pay the interest to each bank account
at the end of the month. That operation will be performed in parallel by all the
group objects.

During the execution of a method in a cooperative group, each object of the
group can create new threads to execute concurrently that method. This feature
allows taking advantage of the multiprocessing capabilities of the underlying sys-
tem. Thus, two levels of concurrency can be used to execute a method invocation
in a cooperative group, the inherent parallelism provided by object distribution
and local multithreading at each object.

Cooperative groups also behave as a single logical object in front of clients
and servers. Since the state and the code can be different, each object can return
a different result. The final result is composed at the client site before delivering
it to the client application (Fig. 1.a). For instance, a method computing the
total balance of a set of accounts will compose the results adding all the object
results.

Unlike replicated objects, objects of a cooperative group are aware of each
other and they can communicate among them. For instance, a cooperative group
can store the agendas of the staff of a company, where each group member holds
a department agenda. An agenda contains information about the schedule of an
employee. The group can provide a service to set meetings among members of
several departments in a given period of time. When this service is invoked, group
objects communicate among them to notify the availability of the members of
their departments to find a common free slot to set the meeting.

2.2 Transactions

Transactions [6] are used to preserve data consistency in the presence of failures
and concurrent accesses. A transaction either finishes successfully (commits) or
fails (aborts). A transaction provides the so-called ACID properties. Atomicity
ensures that a transaction is completely executed (it commits) or the result is as
it were not executed (it aborts). If a transaction aborts, the atomicity property
ensures that the state is restored to a previous (consistent) one. Hence, transac-
tion atomicity provides backward recovery. Isolation or serializability guarantees
that the result of concurrent transactions is equivalent to a serial execution of
them. Durability ensures that the effect of committed transactions is not lost
even in the advent of failures.

Transactions can be nested [18]. Nested transactions or subtransactions can
be executed concurrently, but isolated from each other. They cannot communi-
cate among them due to the isolation property. No concurrency is allowed in the
traditional nested transaction model apart from concurrent subtransactions. If a
subtransaction aborts only that subtransaction is undone, the parent transaction
does not abort. Therefore, subtransactions also allow confining failures within a
transaction. However, if a transaction aborts, all its subtransactions will abort
to preserve the atomicity of the parent transaction. We propose a more general
model, group transactions [20], where a transaction can have several concurrent
threads, either local or distributed. Those threads can communicate among them
and share data as they belong to the same transaction.

2.3 Transactional Object Group Services

If a client interacts with several groups and the atomicity of the whole interac-
tion must be preserved, multicast by itself does not help. The reliability property
of multicast is concerned with a single message (method invocation). To keep
the atomicity of several group invocations, a super-group [22] can be created.
This super-group contains all the groups the client will contact. However, this
solution is very expensive. Creating groups dynamically takes some time and the
groups’ programming gets more complicated. Messages must be decomposed to
know which part belongs to which group of the super-group. Additionally, this
approach does not deal with recovery (needed in case of aborts or failures) nor
with concurrency control (needed for concurrent clients). A simpler approach is
to enclose the whole interaction within a transaction. The transaction automat-
ically guarantees the atomicity property.

Transactional object groups provide atomic services. Clients must interact
with transactional object groups within a transaction. Methods of a transactional
group are executed as subtransactions, which are run by all the group objects.
A subtransaction corresponding to a method invocation on an object group is a
distributed transaction that has as many distributed threads as there are objects
in the group.

Subtransactions on replicated groups are highly available. They survive site
failures without aborting. A subtransaction (method invocation) in a replicated

group will commit as far as there is an available member. This contrasts with
the traditional approach where the failure of a single replica aborts all ongoing
transactions [9].

When a transaction (method invocation) is executed in a replicated group, it
just has a thread per object to enforce the determinism of the group. However,
this restriction does not apply to cooperative groups. Each object of a coopera-
tive group can create new threads on behalf of the (sub)transaction the object
is running. The lifetime of those threads does not expand beyond the method
execution. As the objects of a cooperative group work to achieve a common
goal, it is required that all the group members finish successfully to commit a
transaction. That is, a subtransaction in a cooperative group will commit, if all
its threads finish successfully, otherwise it will abort.

3 Exceptions in Transactional Object Groups

3.1 Exceptions and Transaction Aborts

The operation domain is decomposed into standard and exceptional domains
[3]. An operation invoked within its standard domain terminates successfully.
On the other hand, an operation invoked within its exceptional domain leads to
an exception raising, if the situation is detected. If the exception was foreseen, an
exception handler can fix the situation and bring the system to a new consistent
state (forward recovery), that is, the exception is handled. Exception handlers
are attached to exception contexts, i.e., regions where exceptions are treated
uniformly. Nested operation invocations yield to (dynamic) exception context
nesting. An unhandled exception in an exception context causes its termination
and it is propagated to the outer exception context.

We propose to use exceptions within transactions to attain forward recovery.
In this way we integrate backward and forward recovery provided by transactions
and exceptions, respectively. In the advent of foreseen errors a new consistent
state within a transaction (Fig. 2) can be obtained (those that the transaction
programmer has considered), preventing the transaction abort.

Transaction T |

fransaction T
performs forward
recovery and commits Y

< handler for

exception Yis — .
handled successfully \ exception ¥

Fig. 2. Exception handling within a transaction

Unfortunately, every exception (error) cannot be foreseen nor every exception
can be handled. In our proposal, transactions act as firewalls for unhandled
exceptions applying automatically backward recovery (transaction abort) when
an unhandled exception is propagated outside the transaction boundary (Fig.
3).

Transaction T

fransaction 7
T is aborte
no handler
for exception Z
exception Z

is propagated
to the outer scope

Fig. 3. Exception propagation outside a transaction

As exceptions are used to notify abnormal situations, any exception that is
propagated outside the scope of a transaction causes its abort. If the transaction
had been able to handle the exception internally, it would mean that forward
recovery was successfully applied within the transaction. However, if the error
could not be handled, backward recovery (undoing the transaction) is automat-
ically performed. If the transaction commits, no exception is raised.

Fig. 4 shows how forward and backward recovery are combined. Subtrans-
action T'1.1 raises an exception (V). The exception is not handled in 7'1.1 and
therefore, it is propagated to the enclosing scope (T'1). As a consequence, 7'1.1
aborts (backward recovery). Thread th0 handles the exception (forward recov-
ery) and transaction T'1 continues.

We propose the use of exceptions to notify transaction aborts. Since trans-
action programmers can define their own exceptions, using exceptions to notify
aborts provides more information about the cause of an abort than the tra-
ditional abort statement. This integration can be seen as the identification of
transaction commit with the standard domain and transaction abort with the
exceptional domain of a transaction.

3.2 Concurrent Exceptions

In our model, client transactions can be multithreaded to increase performance.
Due to multithreading, two or more exceptions can be raised concurrently. In

thread thO
Transaction 71| thread thl

T1.1

T1.1is Y
aborted
handler for
exception' Y
T1 commits

Fig. 4. Combined forward and backward recovery

this case, the transaction is aborted, as it happens with a single-threaded trans-
action, and an exception is propagated to notify the abort. However, when there
are concurrent exceptions, it is necessary to perform exception resolution (local
resolution) to choose a single exception to notify the transaction abort. This
situation is depicted in Fig. 5.

thread thO
Transaction T | thread th1

no handler for
exception Y in thO

Z no handler for
exception Zin th1

fransaction

Tis aborted exceptions Y & Z

are resolved

the resulting exception

is propagated to the
enclosing scope

Fig. 5. Concurrent exceptions and exception resolution

A similar scenario can happen during the execution of a group method. An
object group method is executed concurrently by all the group members. If mul-
tiple exceptions are raised, a single exception should be propagated to the outer
scope, in this case, the scope where the method was invoked. Hence, a mech-
anism for distributed exception resolution is also needed. We call it distributed

exception resolution, since it is performed among the distributed objects of a
group. Two cases must be considered: resolution in replicated groups and in
cooperative ones.

Replicated object groups behave deterministically. If a group object raises an
exception, all of them should raise the same exception. However, there are some
situations where the determinism of a replicated group is no longer respected.
For instance, when group members are writing to a file and one of the members
cannot write because of a local disk failure. If a member of a replicated group
raises an exception that the rest of the members do not raise, it is considered
faulty and removed from the group. Generalizing, a voting process is used for
distributed exception resolution in replicated groups, and those members that
are not in the majority are considered faulty and are removed from the group.
If no majority it is obtained, the abort_error exception is raised provoking
the transaction abort. Handling concurrent exceptions in this way avoids state
divergence among the replicas.

In a cooperative group, each object can raise a different exception during
the execution of a method. What it is more, as each object can create local
threads during the execution of a method, concurrent exceptions can be raised
even within a single object. Concurrent exceptions raised within an object (local
exceptions) are more related among them that those exceptions raised at different
objects (distributed exceptions). It is our opinion that it is more adequate to
apply exception resolution in two stages instead of a single global one, as it is
usual.

The first level is a local exception resolution performed among the threads of
a method at a given object. This resolution can be different for each object of a
group. As a result of this resolution, each object will yield at most one excep-
tion. If two or more objects of a group raise exceptions, distributed resolution is
applied. This resolution constitutes the second level. Distributed exception res-
olution takes the exception raised by each group member (if any) and returns a
single exception. Observe that each object will propagate at most one exception.
If more than one exception is raised in an object, local exception resolution will
return a single exception. Therefore, only an exception is propagated at each ob-
ject. These two levels of exception resolution in cooperative object groups yield
to a hierarchical exception resolution.

The situation is depicted in Fig. 6. A method has been invoked in the group.
The group is executing the method. The three objects of the group (obj.1, 0bj.2
and o0bj.3) have two threads. At object obj.1, thread thl raises the exception Y
and thread th11 raises Z. None of the exceptions is handled in its corresponding
thread. Object 0bj.1 applies local exception resolution. As a result, transaction
T finishes at obj.1 raising exception W. At 0bj.2 a single exception is unhandled
(X). Therefore, no local resolution is applied. Transaction T finishes at o0bj.2
raising exception X. obj.8 finishes transaction 7" succesfully. As two objects have
finished the transaction raising an exception, distributed exception resolution is
applied among the exceptions (W and X) raised by the group objects. The

exception resulting from this resolution (A) is propagated to the client to notify
the abort of transaction T'.

Transaction T
thi

th11

no handler for \%
exc. YinthO
VA no handler for
exc. Zinthl
g exc.Y&Z are
locally resolved

yielding exc. W,

distributed resolution
is applied to exc. W & X
yielding exc. A
transaction T aborts

A

Transaction T

no handler for
exc. Xin thO

ok

Transaction T
th3

th31

no exception is raised
at this object

Object group

Fig. 6. Local and distributed exception resolution

4 Linguistic Support

The mechanisms previously described have been included in an Ada 95 exten-
sion, Transactional Drago [21]. Ada 95 is a programming language that provides
objects, concurrency and exception handling, therefore, the extension of the
language is quite natural. Although, in this section we refer to Ada, the same
linguistic mechanisms can be easily applied to any programming language that

provides objects, concurrency/distribution and exceptions, for instance, Java.
The runtime of Transactional Drago is provided by TransLib [13] an object ori-
ented library that can be used in combination with Ada.

Our proposal consists of introducing two new constructs: the transactional
block, and transactional object groups. A transactional block allows to initiate a
transaction (or transactional scope). Transactional blocks have a similar syntax
to the Ada block statement. A keyword is used to distinguish a regular block
statement from a transactional one. As block statements can have attached ex-
ception handlers, no new instruction is needed to handle aborts (since they are
propagated as exceptions). Nesting of transactional blocks is used to implement
nested transactions. Data items declared within a transactional block are subject
to concurrency control (they are atomic) and can also be persistent. In order to
ease the programmer task, concurrency control is implicitly set in Transactional
Drago. In particular, read/write locking is used.

Ada tasks are used to create local threads where they are allowed (transac-
tional blocks and methods of cooperative groups). If tasks are declared within
a method of a cooperative object, they will be local threads of the associated
transaction. A method (and a transactional block) cannot terminate until all its
threads terminate, as happens with the regular block statement in Ada.

The Ada exception model is based on the termination model [5]. In this model
when an exception is raised, the scope where the exception is raised terminates.
Scopes in Ada are subprograms, task bodies, block statements, ... Unhandled
exceptions are propagated from one scope to the enclosing one until they are
successfully handled or they reach the outermost scope, which can be either the
main program or a task. An unhandled exception in the main program causes its
termination with a run-time error, whilst in a task, it causes the task termination.
We have modified the behavior of unhandled exceptions in tasks when they
belong to a transaction. Instead of losing the exception, the Transactional Drago
runtime handles it to prevent its loss and enforce the semantics presented above.

Transactional object groups are provided, extending the Ada distributed sys-
tems annex by introducing a new kind of partition (Ada unit of distribution)
corresponding to an object group. There is a peculiarity about cooperative ob-
ject groups. In these groups there is a single class specification, but there might
be multiple implementations (up to one per object of the group). Replicated ob-
ject groups have a single implementation and only the number of replicas needs
to be defined in this case.

In Ada there is no resolution of concurrent exceptions. In Transactional Drago
exception resolution clauses are provided to associate resolution functions for
concurrent exceptions either to a transactional block or to a cooperative object
group method. These functions take two exceptions as arguments and return the
resulting exception!. If n exceptions are concurrently raised within a transaction,
the resolution function will be called n —1 times by the runtime system to obtain
the final exception.

! In fact, as exceptions cannot be passed as arguments in Ada 95, exception identities
are used for this purpose.

5 Implementation

The main implementation issue in the integration of transactional object groups
and exceptions is how to combine exception handling and resolution with trans-
action termination protocols (commit and abort). Termination of traditional
single-threaded transactions is trivially determined. A transaction finishes when
its code executes the last statement of a transaction, which determines the out-
come of the transaction. It finishes successfully, if a commit was executed. Oth-
erwise, it aborts. However, the termination of a multithreaded transaction is not
that easy. First, it is necessary to find out when it terminates. And second, it
must be determined how it terminates, that is, whether it commits or aborts. If
the transaction aborts, an exception must be choosen. In order to achieve this
task, we have combined three different algorithms: commit protocol, abort pro-
tocol, and exception resolution algorithm into one. We have called it hierarchical
termination algorithm.

First, let’s discuss the behavior of the protocol in the case of a non-distributed
(client) multithreaded transaction. Initially, a thread (the main thread) starts a
transaction. Once the transaction has started, this thread may spawn additional
threads (secondary threads) that will also work on behalf of the transaction.
Unlike in the traditional single-threaded model, it is necessary to perform a ter-
mination protocol where the main thread waits for the outcomes of all the trans-
action threads. If the transaction aborts (due to the exceptional termination of
one or more threads), the termination protocol will apply the resolution function
to obtain a unique exception. Then, it will abort the transaction and propagate
the resulting exception to the enclosing exception context. If the transaction
commits, the appropriate actions will be taken to make the results permanent.

Method invocations of object groups are performed as subtransactions. If
the group is cooperative, these subtransactions might have two levels of concur-
rency. At the first level there is a thread at each group object that executes a
method invocation. Those threads are distributed. The second level (is optional,
and only available in cooperative groups) corresponds to local threads created in
an object method. The termination algorithm is performed in two stages corre-
sponding to the two concurrency levels. First, each object waits for the outcome
of its local threads. It produces a successful outcome or an exception. In case of
concurrent exceptions, the local resolution function is applied. Then, the caller
acts as coordinator of the distributed termination. It waits for the outcome of
each of the objects. Again, the final outcome is commit if all the objects finished
successfully. In case of an abort, the exception propagated is chosen applying the
distributed resolution function to the exceptions propagated by the distributed
objects (that can be the result of a local resolution).

Transactions in replicated object groups also need a termination protocol.
The caller plays the role of coordinator and waits for the results of all the group
members. The majority decides the outcome of the transaction. If the outcome
is abort, the exception raised by the majority is propagated to the caller. The
objects not included in the majority are removed from the group. If the outcome

is commit, no exception is propagated. If no majority is reached, the transaction
aborts propagating the abort_error exception to the caller.

6 Related Work

There have been few attempts to integrate transactions and exceptions in the
literature. One of the first ones was Argus [14], a distributed transactional pro-
gramming language. Its approach is an orthogonal integration where transactions
can commit or abort, independently of how they terminate (normally or excep-
tionally). In our opinion this implies some dangers. In particular, committing a
transaction that terminates exceptionally is quite dangerous. An exception in-
dicates that an operation has been called in its exceptional domain and hence,
that the postcondition is not guaranteed. Therefore, if the transaction commits,
a state that might be inconsistent is being made permanent.

[27] presents an approach for integrating coordinated atomic actions and ex-
ceptions. This work deals with a different context where processes join explicitly
on-going atomic actions at different moments to cooperate within them. These
processes are autonomous entities (for instance, different devices of a manufac-
turing system) that at some points cooperate to perform a particular action. For
this reason, when an exception is raised within a coordinated atomic action, the
exception is propagated to all the participants in the action.

Although, this approach is quite indicated for autonomous (active) entities,
it is not applicable to a transactional system, where servers are passive entities
that only perform work on behalf of clients. In particular, existing threads cannot
join on-going transactions. In our approach, threads are created when an object
group method is called. Those threads terminate with the method. Exceptions
raised by any of these threads are not propagated to other group members.
Resolution is applied and the result is propagated to the enclosing scope.

Arche [11] is a parallel object-oriented programming language. In this lan-
guage a notion of object groups is provided. An object group is defined as a
sequence of objects. The signature of a group operation (or multi-operation) re-
sults from converting each parameter from the original class (the base class of
the group) into a sequence of parameters of the original type. This object group
definition is targeted to the explicit parallelization of algorithms, and strongly
contrasts with the one provided in our approach, where distribution is hidden
behind the object group, and thus, it is transparent to the client of the group.
This definition also differs in that it does not provide any fault-tolerance. Ob-
ject group invocations are unreliably multicast to the group members. In our
approach reliable multicast and transactions provide fault-tolerant atomic ser-
vices.

Arche also provides exception handling. Exceptions are defined as objects
to allow their extension/redefinition in subclasses. Two kinds of exceptions are
defined: global and concerted. When a member of a group raises a global ex-
ception, the exception is propagated to all the group members if they try to
synchronize with the signaler of the global exception. Concerted exceptions are

used in synchronous multi-party communication. Exception resolution (possibly,
user-defined) takes place for this kind of exceptions. If during cooperation, one
or more members of a group raise an exception, a concerted exception is then
locally computed and raised within each of the members.

Concerted exceptions have some similarities with concurrent exceptions in
our approach. In both cases, exception resolution takes place and can be user-
defined. However, resolution functions take different forms. In Arche, resolution
functions take as parameter a sequence of raised exceptions, whilst in our ap-
proach, a binary resolution function is used. Arche’s approach is more flexible,
but it is also more complex for the programmer as it is necessary to iterate
through the sequence of exceptions. Our approach is less flexible in this aspect,
but it is much simpler from the programmer viewpoint, as the code of the resolu-
tion function only deals with two exceptions. Additionally, the iteration through
the sequence of exceptions is performed by the underlying system for the sake of
reliability. Additionally, in Arche there is a single level of resolution, while in our
approach, there are two levels due to the nature of cooperative groups. Another
difference between Arche and the approach we have presented comes from dif-
ferences in the host languages. Arche uses an object oriented exception model,
while our proposal uses the Ada exception model, that is not object-oriented,
and extends it to deal with object groups.

There are several proposals for implementing distributed object groups [15,
17,8,16], but none of them deals with the semantics of exceptions.

7 Conclusions

All the concepts we have used in the article, namely transactions, exceptions,
multithreading, and object groups, are implemented in modern object-oriented
languages and systems. The importance of transactions as a mechanism to pro-
gram reliable distributed systems has been recognized in current standards. Ex-
amples of this are CORBA object transaction service (OTS) [19], Java transac-
tion service (JTS) [26], or the transactional support of Enterprise Java Beans
[25]. Exceptions are already part of current object-oriented languages, like C++
and Java, and systems, e.g., CORBA. Multithreading has been around for more
than a decade and it is supported by Java and CORBA, and by all modern op-
erating systems. Object groups are becoming increasingly important and there
several research efforts in this direction. However, a consistent integration of
all of them has not been addressed to our knowledge in any language or sys-
tem. The work presented in this article addresses how to integrate these existing
mechanisms in a consistent way.

In this article we have presented a new use of exceptions in the context of
transactional object groups. This approach is novel in that integrates backward
and forward recovery provided by transactions and exceptions. This allows the
use of forward recovery within a transaction.

The second contribution is a proposal of semantics for exceptions raised by
object groups. Two cases have been considered depending on the group func-

tionality. In replicated groups, the implicit exception resolution is used to avoid
divergence of replicas’ state. In cooperative groups exception resolution is user
defined. Additionally, this semantics have also been integrated in the context
of transactions. It has been proposed how to integrate the commit and abort
protocols of transactions with exception resolution in a single algorithm. Thus,
no additional cost is paid for exception resolution.

We believe that transactional object groups will play an important role in
simplifying the programming of future reliable distributed systems, and there-
fore, a clear semantics for exceptions should be provided for these kinds of sys-
tems.

References

1. K.P. Birman and R. Van Renesse. Reliable Distributed Computing with Isis Toolkit.
IEEE Computer Society Press, Los Alamitos, CA, 1993.

2. K.P. Birman. Building Secure and Reliable Network Applications. Prentice Hall,
NJ, 1996.

3. F. Cristian. Exception Handling and Software Fault Tolerance. ACM Transactions
on Computer Systems, C-31(6):531-540, June 1982.

4. J. L. Eppinger, L. B. Mummert, and A. Z. Spector, editors. Camelot and Avalon: A
Distributed Transaction Facility. Morgan Kaufmann Publishers, San Mateo, CA,
1991.

5. J. B. Goodenough. Exception Handling: Issues and a Proposed Notation. Com-
munications of the ACM, pages 683696, 1975.

6. J. Gray and A. Reuter. Transaction Processing: Concepts and Technigques. Morgan
Kaufmann Publishers, San Mateo, CA, 1993.

7. F. Guerra, J. Miranda, A. Alvarez7 and S. Arévalo. An Ada Library to Program
Fault-Tolerant Distributed Applications. In K. Hardy and J. Briggs, editors, Proc.
of Int. Conf. on Reliable Software Technologies, volume LNCS 1251, pages 230-243,
London, United Kingdom, June 1997. Springer.

8. R. Guerraoui, P. Felber, B. Garbinato, and K. R. Mazouni. System support for
object groups. In ACM Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’98), October 1998.

9. R. Guerraoui, R. Oliveira, and A. Schiper. Atomic Updates of Replicated Objects.
In Proc. of the Second European Dependable Computing Conf. (EDCC’96), volume
LNCS 1150, Taormina (Italy), October 1996. Springer Verlag.

10. V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Problems. In
S. Mullender, editor, Distributed Systems, pages 97-145. Addison Wesley, Reading,
MA, 1993.

11. V. Issarny. An exception-handling mechanism for parallel object-oriented pro-
gramming: Toward reusable, robust distributed software. Journal Object-Oriented
Programming, 6(6):29-40, October 1993.

12. R. Jiménez Peris, M. Patifio Martinez, and S. Arévalo. Deterministic Scheduling
for Transactional Multithreaded Replicas. In Proc. of the Int. Symp. on Reliable
Distributed Systems (SRDS), pages 164-173, Niirnberg, Germany, October 2000.
IEEE Computer Society Press.

13. R. Jiménez Peris, M. Patino Martinez, S. Arévalo, and F.J. Ballesteros. TransLib:
An Ada 95 Object Oriented Framework for Building Dependable Applications.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.
26.
27.

Int. Journal of Computer Systems: Science & Engineering, 15(1):113-125, January
2000.

B. Liskov. Distributed Programming in Argus. Communications of the ACM,
31(3):300-312, March 1988.

S. Maffeis. Adding Group Communication and Fault-Tolerance to CORBA. In
Proc. of 1995 USENIX Conf. on Object-Oriented Technologies, June 1995.

G. Morgan, S.K. Shrivastava, P.D. Ezhilchelvan, and M.C. Little. Design and Im-
plementation of a CORBA Fault-tolerant Object Group Service. In Proc. of the
Second IFIP WG 6.1 International Working Conference on Distributed Applica-
tions and Interoperable Systems, DAIS’99, June 1999.

L. E. Moser, P. M. Melliar-Smith, P. Narasimhan, L. Tewksbury, and V. Kalogeraki.
The Eternal System: An Architecture for Enterprise Applications. In International
Enterprise Distributed Object Computing Conference, pages 214-222, September
1999.

J. E. B. Moss. Nested Transactions: An Approach to Reliable Distributed Comput-
ing. MIT Press, Cambridge, MA, 1985.

OMG. CORBA services: Common Object Services Specification. OMG.

M. Patifio Martinez, R. Jiménez Peris, and S. Arévalo. Integrating Groups and
Transactions: A Fault-Tolerant Extension of Ada. In L. Asplund, editor, Proc.
of Int. Conf. on Reliable Software Technologies, volume LNCS 1411, pages 78-89,
Uppsala, Sweden, June 1998. Springer.

M. Patifio Martinez, R. Jiménez Peris, and S. Arévalo. Synchronizing Group Trans-
actions with Rendezvous in a Distributed Ada Environment. In Proc. of ACM
Symp. on Applied Computing, pages 2-9, Atlanta, Georgia, February 1998. ACM
Press.

A. Schiper and M. Raynal. From Group Communication to Transactions in Dis-
tributed Systems. Communications of the ACM, 39(4):84-87, April 1996.

F. B. Schneider. Implementing Fault-Tolerant Services Using the State Machine
Approach: A Tutorial. ACM Computing Surveys, 22(4):299-319, 1990.

S. K. Shrivastava. Lessons Learned from Building and Using the Arjuna Dis-
tributed Programming System. In K.P. Birman, F. Mattern, and A. Schiper, edi-
tors, Theory and Practice in Distributed Systems, volume LNCS 938, pages 17-32.
Springer, 1995.

Sun. Enterprise JavaBeans. http://java.sun.com/products/ejb/index.html.

Sun. Java Transaction Service. http://java.sun.com/products/jts/.

J. Xu, A. Romanovsky, and B. Randell. Coordinated Exception Handling in Dis-
tributed Object Systems: from Model to System Implementation. In Proc. of Int.
Conference on Distributed Computing Systems, ICDCS-18, May 1998.

