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Abstract

Atomic commitment is one of the key functionalities of modern in-
formation systems. Conventional distributed databases, transaction pro-
cessing monitors, or distributed object platforms are examples of complex
systems built around atomic commitment. The vast majority of such
products implement atomic commitment using some variation of 2 Phase
Commit (2PC) although 2PC may block under certain conditions. The
alternative would be to use non-blocking protocols but these are seen as
too heavy and slow. In this paper we propose a non-blocking distributed
commit protocol that exhibits the same latency as 2PC. The protocol
combines several ideas (optimism and replication) to implement a scal-
able solution that can be used in a wide range of applications.

1 Introduction

Atomic commitment (AC) protocols are used to implement atomic transactions.
Two-phase commit (2PC) [Gra78] is the most widely used AC protocol although
its blocking behavior is well known. There are also non-blocking protocols but
they have an inherent higher cost [DS83, KRO1] usually translated in either a
explicit extra round of messages (3 phase commit (3PC) [Ske81, Ske82, KD95])
or an implicit one (when using uniform multicast [BT93]).
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The reason why 2PC is the standard protocol for atomic commitment is that
transactional systems pay as much attention to performance as they do to con-
sistency. For instance, most systems summarily abort those transactions that
have not committed after a given period of time so that they do not keep re-
sources locked. Existing non-blocking protocols resolve the consistency problem
by increasing the latency and, therefore, are not practical. A realistic non-
blocking alternative to 2P C needs to consider both consistency and transaction
latency. Ideally, the non-blocking protocol should have the same latency as
2PC. Our goal is to implement such a protocol by addressing the three main
sources of delay in atomic commitment: message overhead, forced writes to the
log, and the convoy effect caused by transactions waiting for other transactions
to commit.

To obtain non-blocking behavior, it is enough for the coordinator to use a
virtual synchronous uniform multicast protocol to propagate the outcome of
the transaction [BT93]. This guarantees that either all or none of participants
know about the fate of the transaction. Uniformity [HT93] ensures the property
holds for any participant, even if it crashes during the multicast. Unfortunately,
uniformity is very expensive in terms of the delay it introduces. In addition,
since the delay depends on the size of the group, using uniformity seriously
compromises the scalability of the protocol. To solve this two limitations, we
use two different strategies. First, to increase the scalability, uniform multicast
is used only within a small group of processes (the commit servers) instead
of using it among all participants in the protocol. The idea is to employ a
hierarchical configuration where a small set of processes run the protocol on
behalf of a larger set of participants. Second, to minimize the latency caused
by uniformity, we resort to a novel technique based on optimistic delivery that
overlaps the processing of the transactional commit with the uniform delivery of
the multicast. The idea here is to hide the latency of multicast behind operations
that need to be performed anyway. This is accomplished by processing messages
in an optimistic manner and hoping that most decisions will be correct although
in some cases transactions might need to be aborted. This approach builds
upon recent work in optimistic multicast [PS98] and a more aggressive version
of optimistic delivery proposed in the context of Postgres-R [KPAS99] and later
used to provide high performance eager replication in clusters [PJKA00]. We
use an optimistic uniform multicast that delivers messages in two steps. In
the first step messages are delivered optimistically as soon as they are received.
In the second step messages are delivered uniformly when they become stable.
This optimistic uniform multicast is equivalent to a uniform multicast with safe
indications [VKCD99].

Forced writes to the log are another source of inefficiencies in AC protocols.
To guarantee correctness in case of failures, participants must flush to disk a
log entry before sending their vote. This log entry contains all the information
needed by a participant to recall its own actions in the event of a crash. The
coordinator is also required to flush the outcome of the protocol before commu-
nicating the decision to the participants (this log entry can be skipped by using
the so called presume commit or presume abort protocols [MLO86]). Flushing



log records adds to the overall latency as messages cannot be sent or responded
to before writing to the log. In the protocol we propose, this delay is reduced
by allowing sites to send messages instead of flushing log records. The idea is
to use the main memory of a replicated group (the commit servers mentioned
above) as stable memory instead of using a mirrored log with careful writes.

Finally, to minimize the waiting time of transactions, in our protocol locks
are released optimistically. The idea is that a transaction can be optimisti-
cally committed pending the confirmation provided by the uniform multicast.
By optimistically committing the transaction, other transactions can proceed
although they risk a rollback if the transaction that was optimistically commit-
ted ended up aborting. In our protocol, the optimistic commit is performed in
such a way that aborts are confined to a single level. In addition, transactions
are only optimistically committed when all their participants have voted affir-
matively, thereby greatly reducing the risk of having to abort the transaction.
This contrasts with other optimistic commit protocols, e.g., [GHR97], where
transactions that must abort (because one or more participants voted abort)
can be optimistically committed although they will rollback anyway producing
unnecessary cascading aborts.

With these properties the protocol we propose satisfactorily addresses all
design concerns related to non-blocking AC and can thus become an important
contribution to future distributed applications. The paper is organized as fol-
lows, Section 2 describes the system model. Section 3 and 4 present the commit
algorithm and its correctness. Section 5 concludes the paper.

2 Model

2.1 Communication Model

The system consists of a set of fail-crash processes connected through reliable
channels. Communication is asynchronous and by exchanging messages. A
failed process can later recover with its permanent storage intact and re-join
the system. Failures are detected using a (possibly unreliable) failure detector!
[CT96].

A virtual synchronous multicast service [BSS91, Bir96, SR93] is used. This
service delivers multicast messages and views. Views indicate which processes
are perceived as up and connected. We assume a virtual synchrony with the
following properties: (1) Strong virtual synchrony [FvR95] or sending view de-
livery [VKCD99] that ensures that messages are delivered in the same view they
were sent; (2) Magjority or primary component views that ensure that only mem-
bers within a majority view can progress, while the rest of the members block
until joining again the majority view; (3) Liveness, when a member fails or it is
partitioned from the majority view, a view excluding the failed member will be

IThe failure detector must allow the implementation of the virtual synchrony model de-
scribed below (e.g., the one proposed in [SR93]) and the non-blocking atomic commitment
(e.g., the one in [GLS95]).



eventually delivered.

The protocol uses two different multicast primitives [HT93, SS93]: reliable
(rel-multicast) and uniform multicasts (uni-multicast). Three primitives define
optimistic uniform reliable multicast?: Uni-multicast(m, g) multicasts message
m to a group g. Opt-deliver(m) delivers m reliably to the application. Uni-
deliver(m) delivers m to the application uniformly. We say that a process is
v; — correct in a given view v; if it does not fail in v; and if v;y1 exists, it
transits to it. The rel- and uni-multicasts preserve the following properties,
where m is a message, g a group of processes and v; a view within this group:

OM-Validity: If a correct process rel or uni-multicast m to g in v;, m will be
eventually opt-delivered by every wv;-correct process.

OM-Agreement: If a v;-correct process opt-delivers m in v;, every v;-correct
process will eventually opt-deliver m.

OM-Integrity: Any message is opt and uni-delivered by a process at most
once. A message is opt-delivered only if it has been previously multicast.

Uni-multicast additionally fulfills the following properties:

OM-Uniform-Agreement: If a majority of v;-correct processes opt-deliver
m, they will eventually uni-deliver m. If a process uni-delivers m in v;,
every v;-correct process will eventually uni-deliver m.

OM-Uniform-Integrity: A message is uni-delivered in v; only if it was pre-
viously opt-delivered by a majority of processes in v;.

2.2 Transaction Model

Clients interact with the database by issuing transactions. A transaction is a
partially ordered set of read and write operations followed by either a commit
or an abort operation. The decision whether to commit or abort is made after
executing an optimistic atomic commitment protocol. The protocol can decide
(1) to immediately abort the transaction, (2) to perform an optimistic commit,
or (3) decide to commit or abort.

We assume a distributed database with n sites. Each site ¢ has a transaction
manager process T'M;. When a client submits a transaction to the system, it
chooses a site as its local site. The local T'M; decides which other sites should get
involved in processing the transaction and initiates the commitment protocol.

We assume the database uses standard mechanisms like strict 2 phase locking
(2PL) to enforce serializability [BHG87]. The only change over known protocols
is introduced during the commit phase of a transaction. When a transaction ¢
is optimistically committed, all its write locks are changed to opt locks and all
its read locks are released®. Opt locks are compatible with all other types of

2Senders are not required to belong to the target group.
30Once a transaction concludes, all its read locks can be released without compromising
correctness independently of whether the transaction commits or aborts [BHGS87].



locks. That is, other transactions are allowed to set compatible locks on data
held under an opt lock. Such transactions are said to be on-hold, while the
rest of transactions are said to be on normal status. When the outcome of ¢
is finally determined, its opt locks are released and all transactions that were
on-hold due to these opt locks are returned to their normal state. A transaction
that is on-hold cannot enter the commit phase until it returns to the normal
state.

2.3 System configuration

For the purposes of this paper, we will assume there are two disjoint groups of
processes in the system. The first will conform the distributed database and will
be referred as the transaction managers or TM group (I'M = {T'M,,...,TM,}).
Sites in this group are responsible for executing transactions and for triggering
the atomic commitment protocol. By participants in the protocol, we mean
processes in this group. The second group, commit server or CS group (CS =
{C,...,C,}) is a set of replicated processes devoted to perform the AC protocol.
We assume that in any two consecutive views, there is a process that transits
from the old view to the new one?.

2.4 Problem definition

A non-blocking AC protocol should satisfy: (1) NBAC-Uniform validity, a trans-
action is (opt) committed only if all the participants voted yes; (2) NBAC-
Uniform-Agreement, no two participants decide differently; (3) NBAC-Termination,
if there is a time after which there is a majority view sequence in the CS group
that permanently contains at least a correct process, then the protocol termi-
nates; (4) NBAC-Non-Triviality [Gue95], if all participants voted yes, and there

no failures or false suspicions, then commit is decided.

3 A Low Latency Commit Algorithm

3.1 Protocol Overview

The AC protocol starts when a client requests to commit a transaction. The
commit request arrives at a transaction manager, T'M;, which then starts the
protocol. The protocol involves several rounds of messages in two phases:

First phase

1. Upon delivering the commit request, T'M; multicasts a reliable prepare to
commit message to the TM group. This message contains the transaction

41t might seem a strong assumption for safety that at least one server must survive between
views. However, this assumption is no stronger than the usual one that assumes that the log
is never lost. The strength of any of the assumptions depends on the probability of the
corresponding catastrophic failures.



identifier (tid) to be committed and the number of participants involved
(the number of TMs contacted during the execution of the transaction).

2. Upon delivering the prepare to commit message, each participant uni-
multicasts its vote and the number of participants to the CS group. If
a participant has not yet written the corresponding entries to its local
log when the prepare to commit message arrives, it sends the log entry in
addition to its vote without waiting to write to the log. After the message
has been sent, it then writes the log entry to its local disk.

Second phase

1. Upon opt-delivering a vote message, the processes of the commit server
decide who will act as prozy coordinator for the protocol based on the tid
of the transaction and the current view. Assume this site is C;. The rest
of the processes in the CS group act as backup in case C; fails. If a no
vote is opt-delivered, the transaction is aborted immediately and an abort
message is reliable multicast to the TM group. If all votes are yes, as soon
as the last vote is opt-delivered at C;, C; sends a reliable multicast with
an opt-commit message to the TM group.

2. Upon delivering an abort message, a participant aborts the transaction.
Upon delivering an opt-commit message, the participant changes the trans-
action locks to opt mode.

3. If all votes are affirmative, when they have been wni-delivered at C;, C;
reliable multicasts to the TM group a commit message.

4. When a participant delivers a commit or abort message, it releases all locks
(both opt and non-opt) held by the transaction and return the correspond-
ing transactions that were on hold to their normal state.

5. If all the votes are affirmative, the coordinator opt-commits the transac-
tion before being excluded from the majority view (before being able to
commit the transaction), and one or more votes do not reach the majority
view, the transaction will be aborted by the new coordinator.

This protocol reduces the latency of the non-blocking commit in several ways.
First, at no point in time in the protocol must a site wait to write a log entry to
the disk before reacting to a message. The CS group acts as stable storage for
both the participants (sites at the TM which could not yet write their vote and
other transaction information to disk when the prepare to commit vote arrives)
and the CS group itself (the coordinator does not need to write an entry to the
log before sending the opt-commit message). Second, the coordinator in the CS
group provides an outcome without waiting for the vote messages to be uniform.
This reduces the overhead of uniform multicast as it overlaps its cost with that
of committing the transaction.



3.2 The Protocol

The protocol uses the CS group to run the atomic commitment. The processes
in the TM group® only act as participants and the CS group acts as coordinator.
We use two tables, trans_tab and vote_tab, to store information in main memory
about the state of a transaction and the decision of each participant regarding a
given transaction at each C'S;. We also use a number of functions to change and
access the values of the attributes in these tables. Trans_tab contains the at-
tributes tid (the transaction’s identifier), n_participants (number of participants
in that transaction, all sites in the TM group), timestamp (of the first vote for
timeout purposes), coordinator (id of the coordinator site in the CS group; this
attribute is initially set with the function store_trans and updated with the func-
tion store_coordinator), and outcome (the state of the transaction; initially it is
undecided, the state can be changed to aborted, opt-committed or committed by
invoking the function store_outcome). Vote_tab contains the attributes tid (the
transaction’s identifier), participant_id (site emitting the vote, which must be a
site in the TM group), vote (the actual vote), vote_status (initially optimistic,
when set with the function store_opt_vote, and later definitive, when set with
the function store_def_vote), and log (any log entry the participant may have
sent with the vote). There are additional functions to consult the attributes
associated to each tid in the trans_tab. These functions are denoted with the
same name as the attribute but starting with capital letter (e.g., Timestamp).
There are also functions to consult the vote_tab: Log (to obtain the log sent by
a participant), N_opt_yes_votes (number of yes votes delivered optimistically for
a particular transaction), N_def_yes_votes (similarly for uni-delivered yes votes).
An additional function, Coordinator, is used to obtain the id of the coordinator
of a transaction given its tid and the current view.

TM Group actions:

Upon delivering Prepare(tid):
if prepared in advance then
uni-multicast(CS, Vote(tid, n_participants, my_id, vote, empty))
else
uni-multicast(CS, Vote(tid, n_participants, my_id, vote, log_record))
end if

Upon delivering Opt-commit(tid):
Change transaction tid locks to opt-mode

Upon delivering Commit/Abort(tid):

Commit/Abort the transaction and release transaction tid locks
Change the corresponding on-hold transactions to normal status

CS Group actions:

5For simplicity, messages are multicast to all TM processes. Processes for which the mes-
sage is not relevant just discard it.



Upon opt-delivering Vote(tid, n_participants, participant-id, vote, log):
store_opt_vote(vote_tab, tid, participant_id, vote, log)
— the transaction outcome is still undecided
if Outcome(trans_tab, tid) = undecided then
if vote = no then
if Coordinator(current_view, tid) = my_id then
rel_multicast(TM, Abort(tid))
end if
store_outcome(trans_tab, tid, aborted)
else — vote = yes
if N_opt_yes_votes(vote_tab, tid) = 1 then — it is the first vote
timestamp = current_time
if Coordinator(current_view, tid) = my_id then
set_up-timer(tid, timestamp+waiting_time)
end if
store_trans(trans_tab, tid, n_participants, timestamp)
end if
if N_opt_yes_votes(vote_tab, tid) = n_participants(trans_tab, tid) then — all voted yes
store_outcome(trans_tab, tid, opt-committed)
if Coordinator(current_view, tid) = my-id then
disable_timer(tid)
rel_multicast(TM, Opt-commit(tid))
end if
end if
end if

Upon uni-delivering Vote(tid, n_participants, participant_id, vote, log):
store_def_vote(trans_tab, tid, participant_id)
if (N_def_yes_votes(vote_tab, tid) = n_participants(trans_tab, tid))
and (Outcome(trans_tab, tid) # abort) then
store_outcome(trans_tab, tid, committed)
if Coordinator(current_view, tid) = my_id then
rel_multicast(TM, Commit(tid))
end if
end if

Upon expiring Timer(tid):
store_outcome(trans_tab, tid, aborted)
uni_multicast(CS, Timeout(tid))

Upon uni-delivering Timeout(tid):
store_outcome(trans_tab, tid, aborted)
if Coordinator(current_view, tid) = my_id then
rel_multicast(TM, Abort(tid))
end if



Upon delivering ViewChange(v;):

current_view = v;
— State synchronization with new members
if my_id is the lowest in v; that belonged to v;_1 then
for every C; € v; do
if Cl e Vi—1 then
send(C;, State(trans_tab, vote_tab))
end if
end for
elsif my_id ¢ v;—1 then I am a new member
receive(State(trans_tab, vote_tab))
end if
— Assignment of new coordinators in v;
for each tid € trans_tab do
if Coordinator(v;, tid) = my-id then
if Outcome(trans_tab, tid) = committed then
rel_multicast(TM, Commit(tid))
elsif Outcome(trans_tab, tid) = aborted then
rel_multicast(TM, Abort(tid))
else
set_up_timer(Timestamp(trans_tab, tid) + waiting_time)
end if
end if
end for
end if

3.2.1 Dealing with coordinator failures

Since sites in the TM group only act as participants, failures in the TM group
do not affect the protocol. In the CS group, all processes are replicas of each
other. Strong virtual synchrony ensures that any pending message sent in the
previous view is delivered before delivering a new view. Thus, when a process
fails (or it is falsely suspected), a new view is eventually delivered to a majority
of available connected CS processes. Once the new view is available, a working
CS process takes over as coordinator for all the on-going commitment protocols
coordinated by the failed process (CS.E). For each on-going transaction commit,
the new coordinator checks the delivery time of the first vote and sets up a timer
accordingly (CS.E). The actions taken by the new coordinator at this point in
time depend on the protocol stage. If the transaction outcome is already known
(all the votes have been opt-delivered at all CS members or a no vote message
has been opt-delivered), the new coordinator multicasts the outcome to the
participants (CS.E). If the outcome is undecided (i.e., all previously delivered
votes were affirmative and there are pending votes), the protocol proceeds as
normal and the new coordinator waits until all vote messages (or a no vote)
have been opt-delivered (CS.A).

The problematic case is when the coordinator has decided to commit the
transaction and then it is excluded from the view. It can be the case that the
coordinator has had time to opt-commit the transaction, but not to commit
it, and that there are missing votes in the majority view. In traditional 2PC,
this situation is avoided by blocking. In our protocol, the blocking situation is
avoided by the use of uniform multicast within the server group. The surviving
sites can safely ignore the previous coordinator: due to uniformity, at worst,
they will be aborting an opt-committed transaction, which does not violate
consistency. A more accurate characterization of the rollback situation follows:



e All the votes are yes and have been opt-delivered at the coordinator.

e The coordinator successfully multicasts the opt-commit to the partici-
pants.

e The vote from at least one of the participants (e.g., p) is not uni-delivered.

e The coordinator and p become inoperative (e.g., due to a crash, a false
suspicion, etc.) in such a way that the multicast does not reach any other
member of the new primary view.

Although such a situation is possible, it is fair to say that it is extremely
unlikely. Even during instability periods where false suspicions are frequent and
many views are delivered, the odds for a message being opt-delivered only at the
coordinator and both the coordinator and p become inoperative before the mul-
ticast of missing votes reaches any other CS member are very low. Additionally,
this has to happen after the opt-commit is effective, as otherwise there would
not be any rollback. Being such a rare situation, the amount of one-level aborts
will be minimal even if the protocol is making optimistic decisions. It is also
possible to enhance the protocol by switching optimism off during instability
periods.

3.2.2 Bounding commit duration

To guarantee the liveness of the protocol and to prevent unbounded resource
contention it is necessary to limit the duration of the commit phase of a trans-
action. This limitation is enforced by setting a timer at the coordinator when
it receives the first vote from a transaction (CS.A). The rest of the members
timestamp the transaction with the current time when they opt-deliver the first
vote. If all participant votes have reached the coordinator before the timer ex-
pires, the timer is disabled (CS.A). Otherwise, the coordinator decides to abort
the transaction but it does not immediately multicast the abort decision to the
TM group (CS.C). Instead, it uni-multicasts a timeout message to the CS group.
When this message is uni-delivered at the coordinator, a message is sent to the
participants with the abort decision (CS.D).

It could be the case that the coordinator multicast a timeout message and,
before uni-delivering it, the missing votes are opt-delivered at the coordinator.
In that case the transaction will be aborted (its outcome is not undecided when
the vote is opt-delivered since in CS.C the outcome is set to abort when the
timer expires). The rest of the CS members will also abort the transaction, no
matter the order in which those messages are delivered. If the missing votes
are delivered before the timeout message, the transaction outcome will be set
to commit (CS.A) until the timeout message is uni-delivered (if so). Upon uni-
delivery of the timeout message the outcome is changed to abort (CS.D). If
the timeout message is uni-delivered before the last vote at a CS member, the
transaction outcome will be initially set to abort (CS.D) and remain so (CS.A).

The coordinator can be excluded from the majority view during this process
and a new coordinator will take over. If the new coordinator has uni-delivered
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the timeout message, the outcome of the transaction will be abort (CS.E).
This will happen independently of whether the old coordinator sent the abort
message to the TM group. If the new coordinator has not uni-delivered the
timeout message before installing the new view, the failed coordinator did not
uni-deliver it either (due to uniformity) and the new coordinator will not deliver
that message (strong virtual synchrony). Therefore, the new coordinator will
behave as a regular coordinator and will set the timer and wait for any pending
vote (CS.E to set the timer, and CS.A in the event a vote arrives).

Despite the majority view approach, the protocol would not terminate if all
the coordinators assigned to a transaction are excluded from the view before de-
ciding the outcome. For instance, the CS group can transit perpetually between
views {1,2,3,4} and {1,2,3,5}, with processes 4 and 5 being the coordinators of a
transaction t in each view. In this case, ¢t will never commit. This scenario can
be avoided by, whenever possible, choosing a coordinator that has not previ-
ously coordinated the transaction. It there is at least a correct process, this will
guarantee that the outcome of ¢ will be eventually decided, thereby, ensuring
the liveness of the algorithm.

3.2.3 Maintaining consistency across partitions

Although partitions always lead to blocking, our protocol maintains consistency
even when partitions occur. That is, no replica decides differently on the out-
come of a transaction even when the network partitions. Consistency is enforced
by combining uniformity, strong virtual synchrony, and majority views. To see
why, we will only consider partitions in the CS group. Partitions in the TM
may lead to delays in the vote delivery (which may result in a transaction abort)
and to delays in the propagation of the transaction outcome (thus, resulting in
blocking during the partition). Partitions that leave the coordinator of a trans-
action in the majority partition of the CS group are not a problem, as the
minority partition gets blocked (due to the majority view virtual synchrony).
Since the transaction outcome is always decided after the uni-delivery of a mes-
sage (either a vote or timeout message), uniformity guarantees that the decision
will be taken by every process in the majority view. When the coordinator of
a transaction is in a minority partition, undecided transactions cannot create
problems as the coordinator, once in the minority partition, will block. When
this happens, a new coordinator can make any decision regarding undecided
transactions without compromising consistency. Only transactions whose out-
come has been decided by the coordinator during the partition may lead to
inconsistencies. There are four cases to consider:

e The coordinator optimistically commits a transaction when it opt-delivers
the last vote (and all votes have been affirmative). Assume a partition
leaves the coordinator in a minority partition. The new coordinator may
(1) opt-deliver all the votes or (2) never deliver one or more votes. In the
first case, it will opt-commit the transaction (CS.A) thereby agreeing with
the old coordinator. In the second case, it will abort the transaction once

11



the timer expires (CS.C). Since the transaction was only optimistically
committed by the old coordinator, the new coordinator is free to decide
to abort without violating consistency.

e If the old coordinator committed a transaction, the new coordinator will
do the same. A transaction is committed when all the votes have been uni-
delivered (CS.B). If the votes were uni-delivered at the old coordinator, all
the processes in that view also uni-delivered them in that view (uniformity
and strong virtual synchrony). Thus, the new coordinator will also commit
the transaction (CS.E).

e The old coordinator opt-delivered a no vote and aborted the transaction.
The new coordinator will either have delivered the no vote or timed out.
In both cases the new coordinator will also abort the transaction (CS.A
and CS.C, respectively) thereby agreeing with the old coordinator.

e The old coordinator timed out and aborted the transaction. The trans-
action will not be effectively aborted until the timeout message is uni-
delivered. Uniformity guarantees that the timeout message, if uni-delivered,
will be uni-delivered to both the old and the new coordinator, thereby pre-
venting any inconsistency.

3.2.4 Replica recovery and partition merges

In order, to maintain an appropriate level of availability, it is necessary to en-
able new (or recovered) replicas to join the CS group and to allow partitioned
groups to merge again. When a new process joins the CS group, virtual syn-
chrony guarantees that the new process will deliver all the messages delivered
by the other replicas after installing the new view (and thus, after state synchro-
nization). The installation of the new view will trigger state synchronization
(CS.E). This involves sending from an old member of the group (one that tran-
sits from the previous view to the current one, that it is guaranteed to exist
due to the majority view approach) a State message with the vote_tab and the
trans_tab tables to the new member. Members from a minority partition that
join a majority view will be treated as recovered members, that is, they will
be sent the up-to-date tables from a process belonging to the previous majority
view.

The state transfer and the assumption that at least a process from the pre-
vious view transits to the next view guarantees that a new member acting as
coordinator will use up-to-date information, thereby ensuring the consistency
of the protocol. The recovery of a participant has not been included in the
algorithm due to its simplicity (upon recovery it will just ask to the CS group
about the fate of some transactions).
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4 Correctness

Lemma 1 (NBAC-Uniform-Validity) A transaction (opt)commits only if
all the participants voted yes. O

Proof (lemma 1): (Opt) Commit is decided when the coordinator multicasts
such message after the transaction has been recorded as (opt) committed in the
trans_tab (CS.A). This can only happen when all participant votes have been
(opt) uni-delivered and they are yes votes. O

Lemma 2 (NBAC-Uniform-Agreement) No two CS members decide dif-
ferently. |

Proof (lemma 2): In the absence of failures the lemma is proved trivially, as
only the coordinator decides about the outcome of the transaction. The rest
of them just logs the information about the transaction in case they have to
take over. The only way for two members to decide on the same transaction
is that one is a coordinator of the transaction and then it is excluded from the
majority view before deciding the outcome. Then, a CS member takes over as
new coordinator and decides about the transaction.

Assume that a coordinator makes a decision and due to its exclusion from
view v;, a new coordinator takes over and makes a different decision. Let us
assume without loss of generality that the new coordinator takes over in view
vi+1 (in general, it will be in v;1f). The old coordinator can have decided to:

1. Commit. The old coordinator can only decide commit if all votes have
been uni-delivered, and they all were affirmative. If the new coordinator
decides to abort, it can only be because it has not uni-delivered one or
more votes neither before the view change nor before its timer expires. In
this situation, there are two cases to consider:

a. The new coordinator belonged to v;. Hence, all votes were uni-
delivered in v; at the old coordinator (which needed all yes votes
to decide to commit) but not at the new coordinator (otherwise it
would also decide to commit) what violates multicast uniformity.

b. The new coordinator joined the CS group after a recovery or a par-
tition merge. From the recovery procedure, the new coordinator has
gotten the most up-to-date state during the state transfer triggered
by the view change. If it decides to abort, it is because a process in
view v; (the one which sent its tables in the state transfer) did not
uni-deliver one or more votes. This again violates uniformity and it
is therefore impossible.

2. Abort due to a no vote. If the old coordinator aborts the transaction, it
does so as soon as the no vote is opt-delivered (CS.A). In order to decide
to commit, the new coordinator needs to uni-deliver all votes and that all
votes are yes. Since a participant votes only once, this situation cannot
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occur (for it to occur, a participant needs to say no to the old coordinator
and yes to the new one).

3. Abort due to a timeout. If the old coordinator decided to abort due to
a timeout, then it uni-delivered its own timeout message (CS.C). If the
new coordinator decides to commit, then it must have uni-delivered all
the votes before its timer expires and before uni-delivering the timeout
message. This implies that the timeout message has been delivered to the
old coordinator in view v; and not to the new coordinator. Now there are
two cases to consider:

a. If the new coordinator was in view v;, the fact that the old coordi-
nator has not received the timeout message violates multicast uni-
formity. It is therefore not possible for the new coordinator to have
been in v;.

b. If the new coordinator was not in view w; then it has joined the
group in view wv;y1, and thus during the state synchronization it has
received the most up-to-date tables. However, this implies that some
process in the CS group was in view v;, transited to v;41, but did
not uni-deliver the timeout message. Again this violates uniformity.

From here, since in all possible cases the new coordinator cannot make a
different decision than the old coordinator once the latter has made a decision
(abort or commit), the lemma is proven. m|

Lemma 3 (NBAC-Termination) If there is a time after, which there is a
magority view sequence in the CS group that permanently contains at least a
correct process, then the protocol terminates. O

Proof (lemma 3): Assume for contradiction that the protocol never ends. This
means that either:

e A correct coordinator never decides. A correct coordinator will either:
(1) Opt-deliver a no vote, in which case the transaction is aborted, or (2)
uni-deliver all the votes and are all yes, in which case the transaction is
committed, or (3) uni-deliver the timeout message before opt-delivering
all the votes (and being all previous votes affirmative), in which case the
transaction is aborted. Therefore, if there is a correct process, there will
eventually be a correct coordinator that will decide the transaction out-
come and multicast it to the participants, thus terminating the protocol.

e There is an infinite sequence of unsuccessful coordinators that do not
terminate the protocol. The NewCoordinator function, whenever possible,
chooses a fresh coordinator (a process that did not previously coordinate
the transaction). This means that a correct process p will eventually
coordinate the transaction. Since p is correct and belongs to the majority
view, it will eventually terminate the protocol as shown before.
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Thereby, it is proven that the protocol eventually terminates. O

Lemma 4 (NBAC-Non-Triviality) If all participants votes yes there are no
failures nor false suspicions then commit will be decided. O

Proof (lemma 4): The abort decision can only be taken when the coordinator
receives a no vote, or because it times out. Otherwise, the decision is commit.
O

Theorem 1 (NBAC-Correctness) The protocol presented in the paper ful-
fills the non-blocking atomic commitment properties: NBAC-Validity, NBAC-
Uniform-Agreement, NBAC-Termination, and NBAC-Non- Triviality. O

Proof (theorem 1): It follows from lemmas 1, 2, 3, and 4 a

5 Conclusions

Atomic commitment is an important feature in distributed transactional sys-
tems. Many commercial products and research prototypes use it to guarantee
transactional atomicity (and, with it, data consistency) across distributed ap-
plications. The current standard protocol for atomic commitment is 2PC which
offers reasonable performance but might block when certain failures occur. In
this paper we have proposed a non-blocking atomic commitment protocol that
offers the same reasonable performance as 2PC but that is non-blocking. Un-
like previous work in the area, we have emphasized several practical aspects of
atomic commitment. First, the new protocol does not create any additional mes-
sage overhead when compared with 2PC. Second, by using a replicated group as
stable memory instead of having to flush log records to the disk, the protocol is
likely to exhibit a shorter response time than standard 2PC. Third, the fact that
the second round of the commit protocol is run only by a small subset of the par-
ticipants minimizes the overall overhead. Fourth, and most relevant in practice,
the new protocol can be implemented on top of the same interface as that used
for 2PC. This is because, unlike most non-blocking protocols that have been pre-
viously proposed, the participants only need to understand a prepare to commit
message (or vote-request) and then a commit or abort message. This is exactly
the same interface required for 2PC and it is implemented in all transactional
applications. Because of these features, we believe the protocol constitutes an
important contribution to the design of distributed transactional systems. We
are currently evaluating the protocol empirically to get performance measures
and are looking into several possible implementations to further demonstrate
the advantages it offers.
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