
Scalable Replication in Database Clusters

M. Pati~no-Mart��nez1, R. Jim�enez-Peris1, B. Kemme2, and G. Alonso2

1 Technical University of Madrid, Facultad de Inform�atica,

Boadilla del Monte, Madrid, 28660, Spain,

fmpatino,rjimenezg@fi.upm.es,
http://lml.ls.fi.upm.es/mpatino, http://lml.ls.fi.upm.es/rjimenez

2 Swiss Federal Institute of Technology (ETHZ), Institute of Information Systems,

ETH Zentrum, CH-8092, Z�urich, Switzerland

fkemme,alonsog@inf.ethz.ch,
http://www.inf.ethz.ch/department/IS/iks

Abstract. The widespread use of clusters and web farms has increased

the importance of data replication. In existing protocols, typical dis-

tributed system solutions emphasize fault tolerance at the price of per-

formance while database solutions emphasize performance at the price

of consistency. In this paper, we explore the use of data replication in a

cluster con�guration with the objective of providing both fault tolerance

and good performance without compromising consistency. We do this by

combining transactional concurrency control with group communication

primitives. In our approach, transactions are executed at only one site

so that not all nodes incur in the overhead of parsing, optimizing, and

producing results. To further reduce latency, we use an optimistic mul-

ticast approach that overlaps transaction execution with the total order

message delivery. The techniques we present in the paper provide correct

executions while minimizing overhead and providing higher scalability.

1 Introduction

Data replication is considered a proven technique to enhance the fault-tolerance

and performance of distributed applications. In practice, however, there is a wide

gap between theory and practice. Conventional algorithms emphasize fault toler-

ance and use replication to implement fail over mechanisms [BHG87]. Database

designers purposefully ignore these algorithms due to their poor performance

[GHOS96]. Instead, most database products use lazy replication that neither

provides fault-tolerance nor full consistency [GHOS96].

It has been suggested [KA98,KA,PGS98,AAAS97] that this gap could be

bridged by combining database replication with group communication primi-

tives [BR93] (mainly total order broadcast [HT93]). This line of work has re-

sulted in e�cient eager replication protocols that guarantee consistency and

increase fault tolerance. Such results are especially suitable for clusters of com-

puters and large collections of shared nothing databases. Although some initial

optimizations have been suggested [KPAS99a] based on optimistic techniques

[PS98], existing protocols have still two major drawbacks. One is the amount of

2

redundant work performed at all sites. The other is the high abort rates created

when consistency is enforced.

In this paper, we address these two issues. First, we present a protocol that

minimizes the amount of redundant work in the system. Transactions, even those

over replicated data, are executed at only one site. The other sites in the system

only need to install the �nal changes. With this, and unlike in many other data

replication protocols, the aggregated computing power of the system actually

increases as more nodes are added. This is a great advantage in environments

where transaction processing represents a signi�cant overhead. For instance, in a

typical web-farm, a transaction is written in SQL and results are returned in the

form of web pages. Processing the transaction involves parsing the SQL, actually

executing the transaction, generating the web pages and delivering them to the

client. Obviously, if this is done at all sites, the amount of wasted resources

can be very high. Moreover, the protocol exploits an extreme form of optimistic

broadcast that hides most of the communication overhead behind the transaction

execution. The only negative aspect of this protocol is that, in some situations,

it aborts transactions in order to guarantee serializability.

To reduce the amount of aborted transactions, we propose a second algo-

rithm. This second algorithm uses a transaction reordering technique that avoids

aborts even when the optimistic and the total message orderings are not the

same. Consistency is still guaranteed without higher transaction latency and the

overall throughput considerably increases by decreasing the abort rate.

The paper is organized as follows. In Section 2 the system model and some

de�nitions are introduced. Sections 3 and 4 describe the algorithms. Fault tol-

erance aspects of the algorithms are discussed in Section 5. Section 6 presents

correctness proofs. Section 7 concludes the paper.

2 System Model

A replicated database consists of a group of nodes N = fN1; N2; :::; Nng, also
called sites, which communicate by exchanging messages. Sites only fail by crash-

ing (byzantine failures are excluded) and we assume there is always at least one

available node in the system. Each site contains a copy of the entire database.

2.1 Communication Model

Sites communicate using group communication primitives [BR93]. These prim-

itives can be classi�ed attending to the order guarantees and fault-tolerance

provided [HT93]. FIFO ordering delivers all messages sent by a site in FIFO

order. Total order ensures that messages are delivered in the same order at all

the sites. In regard to fault-tolerance, reliable multicast ensures that a message is

delivered at all available sites. Uniform reliable multicast ensures that a message

that is delivered at a site (even if it is faulty) will be delivered at all available

sites. We assume a virtual synchronous system [BR93], where all group mem-

bers perceive membership (view) changes at the same virtual time, i.e., two sites

deliver exactly the same messages before installing a new view.

3

In this paper we use an aggressive version [KPAS99b] of the optimistic total

order broadcast presented in [PS98]. Each message corresponds to a transaction.

Messages are optimistically delivered as soon as they are received and before the

de�nitive ordering is established. With this the execution of a transaction can

overlap with the calculation of the total order. If the initial order is the same as

the de�nitive order, the transactions can simply be committed. If the �nal order

is di�erent, additional actions have to be taken to guarantee consistency. This

optimistic broadcast is de�ned by three primitives [KPAS99b]. To-broadcast(m)

broadcast the message m to all the sites in the system. Opt-deliver(m) delivers

message m optimistically to the application (with no order guarantees). To-

deliver(m) delivers m de�nitively to the application (in a total order). This

means, messages can be opt-delivered in a di�erent order at each site, but are to-

delivered in the same total order at all sites. A sequence of opt-delivered messages

is a tentative order. A sequence of to-delivered messages is the de�nitive order or

total order. Furthermore, this optimistic multicast primitive ensures that every

to-broadcast message is eventually opt-delivered and to-delivered by every site in

the system. It also ensures that no site to-delivers a message before opt-delivering

it.

2.2 Transaction Model

Clients interact with the database by issuing transactions. Transactions are par-

tially ordered sets of read (r) and write (w) operations. Two transactions con-

ict, if they access the same data item and at least one of them is a write

operation. A history H of committed transactions is serial if it totally orders

all the transactions. Two histories H1 and H2 are con
ict equivalent, if they

are over the same set of transactions and order con
icting operations in the

same way. A history H is serializable, if it is con
ict equivalent to some serial

history [BHG87]. For replicated databases, the correctness criterion is one-copy-

serializability [BHG87]. Using this criterion, each copy must appear as a single

logical copy and the execution of concurrent transactions must be equivalent to

a serial execution over all the physical copies.

In this paper, concurrency control is based on con
ict classes [KPAS99a].

Each con
ict class represents a partition of the data. Transactions accessing the

same con
ict class have a high probability of con
icts, as they can access the

same data, while transactions in di�erent partitions do not con
ict and can be

executed concurrently. In [KPAS99a] each transaction must access a single basic

con
ict class (e.g., Cx). We generalize this model and allow transactions to access

compound con
ict classes. A compound con
ict class is a non-empty set of basic

con
ict classes (e.g., fCx; Cyg). We assume that the (compound) con
ict class

of a transaction is known in advance.

Each site has a queue CQx associated to each basic con
ict class Cx. When

a transaction is delivered to a site, it is added to the queues of the basic con
ict

classes it accesses. This concurrency control mechanism is a simpli�ed version

of the lock table used in databases [GR93]. In a lock table there is a queue for

4

each data item, whilst in our approach each queue corresponds to an arbitrary

set of data items (i.e., a con
ict class).

Although the model may seem restrictive, it has real applications and it is

used in practice. For instance, in e-commerce applications (commonly imple-

mented as web farms), transactions do not randomly access all the database.

Instead, they typically access only one or two lines of products. By partitioning

the data and allocating partitions to di�erent nodes, performance can be sig-

ni�cantly improved. Our protocols take advantage of this fact to minimize the

overall overhead.

2.3 Execution Model

Each con
ict class (unitary or not) has amaster site. We use a read-one/write-all

available approach. Queries (read only transactions) can be executed at any site

using a snapshot of the data (i.e., they do not interfere with update transactions).

Update transactions are broadcast to all sites, however they are only executed at

the master site of their con
ict class. We say a transaction is local to the master

site of its con
ict class and is remote to the rest of the sites.

For instance, assume two sites N and N 0, where N is the master of con
ict

class fCxg and N 0 is the master of con
ict class fCx; Cyg. Then, a transaction

only accessing Cx will be executed at N but not at N 0. A transaction accessing

both Cx and Cy will be executed atN
0 but not atN . Con
ict classes are statically

assigned to sites, but in case of failures, they are reassigned to di�erent sites.

3 Increasing Scalability

This algorithm extends the one described in [KPAS99b] for �ne-granularity lock-

ing by executing transactions at only one site and allowing transactions to access

more than one con
ict class. With these characteristics, this algorithm greatly

improves scalability as the processing capability of the system increases as more

sites are added. We call this algorithm Nodo (NOn-Disjoint con
ict classes and

Optimistic multicast).

3.1 The Problem

When considering the scalability of data replication protocols, it is important

to keep in mind that replication, by its very nature, does not always scale if the

update ratio is high. To illustrate this point, consider a centralized system, which

is capable of processing t transactions per second. Now assume a system with n

nodes, all of them identical to the centralized one. Assume that the fraction of

updates is w. Assume the load of local transactions at a node is x transactions

per second. Since nodes must also process the updates that come from other

nodes, the following must hold: x+ w (n� 1) x = t, that is, a node processes x

local transactions per second, plus the percentage of updates arriving at other

5

nodes that access replicated data (w x) times the number of nodes. From here,

the number of transactions that can be processed at each node is given by:

t

1 + w (n� 1)

The total capacity of the system is n times that expression which yields, with

t normalized to 1:

n

1 + w (n� 1)

This expression has a maximum of n when w = 0 (there are no updates) and

a minimum of 1 when w = 1 (all operations are updates).

Thus, in any replicated application, as the update factor w approaches 1, the

total capacity of the system tends to that of a single node, independently of how

many nodes are in the system. Note that the drop in system capacity is very

sharp. For 50 nodes, an update factor of 0.2 (20% updates) already causes the

total system capacity to be less than a tenth of the nominal capacity.

3.2 A solution

The key to solve this problem is to execute transactions only at their local

site, thereby reducing the w (n� 1) x factor in the expressions above. All other

sites receive the results of the updates and must only install these updates,

which requires signi�cantly less than actually running the transaction. In order

to guarantee consistency, the total order established by the to-delivery primitive

is used as a guideline to serialize transactions. All sites see the same total order

for update transactions. Thus, to guarantee correctness, it su�ces for a site to

ensure that con
icting transactions are ordered according to the de�nitive order.

Note that transactions can be executed in di�erent orders at di�erent sites if they

are not serialized with respect to each other.

When an update transaction T is submitted, it is broadcast to all nodes.

This message contains the entire transaction and it is �rst opt-delivered at all

sites (including the local site) which can then proceed to add the corresponding

entries in the local queues. Only the local site executes T : whenever T is at

the head of any of its queues the corresponding operation is executed on a

shadow copy of the data. That way, triggers, consistency constraints and internal

read-from dependencies can be observed and aborting the transaction becomes

straightforward.

When a transaction is to-delivered at a site, the site checks that the de�ni-

tive and tentative orders agree. If they agree, the transaction can be committed

after its execution has completed. If they do not agree, there are several cases

to consider. The �rst one is when the lack of agreement is with non-con
icting

transactions. In that case, the ordering mismatch can be ignored. If the mis-

match is with con
icting transactions, there are two possible scenarios. If no

local transactions are involved, the transaction can simply be rescheduled in

6

the queues before the transactions that are only opt-delivered but not yet to-

delivered. With this to-delivered transactions will then follow the de�nitive order.

If local transactions are involved, the procedure is similar but local transactions

must be aborted (because they are executing on the wrong shadow copy) and

rescheduled again (by putting them back in the queues in the proper order).

Once a transaction is to-delivered and completely executed the local site

broadcasts the commit message containing all updates (also called write set

WS). Upon receiving a commit message (which does not need any ordering

guarantee), a remote site installs the updates for a certain basic con
lict class

as soon as the transaction reaches the head of the corresponding queue. When

all updates are installed the transaction commits.

3.3 Example

Assume that there are two basic con
ict classes Cx; Cy and two sites N and

N 0. Site N is the master of con
ict classes fCxg, and fCx; Cyg. We denote the

con
ict class of a transaction Ti by CTi . Site N
0 is the master of fCyg. Assume

there are three transactions, CT1 = fCx; Cyg, CT2 = fCyg and CT3 = fCxg.
That is, T1 and T3 are local at N and T2 is local at N

0. The tentative order at N

is: T1; T2; T3 and at N 0 is: T2; T3; T1. The de�nitive order is: T1; T2; T3. When all

the transactions have been opt-delivered, the queues at each site are as follows:

At N : At N 0:

CQx = T1; T3 CQx = T3; T1
CQy = T1; T2 CQy = T2; T1

At site N , T1 can start executing both its operations on Cx and Cy since it

is at the head of the corresponding queues. When T1 is to-delivered the orders

are compared. In this case, the de�nitive order is the same as the tentative order

and hence, T1 can commit. When T1 has �nished its execution, N will send a

commit message with all the corresponding updates. N can then commit T1 and

remove it from the queues. The same will be done for T3 even if, in principle,

T2 goes �rst in the �nal total order. However, since these two transactions do

not con
ict, this mismatch can be ignored. Parallel to this, when N receives the

commit message for T2, the corresponding changes can be installed since T2 is

at the head of the queue CQy. Once the changes are installed, T2 is committed

and removed from CQy.

At site N 0, T2 can start executing since it is local and at the head of its

queue. However, when T1 is to-delivered, N
0 realizes that it has executed T2 out

of order and will abort T2, moving it back in the queue. T1 is moved to the

head of both queues. Since T3 is remote at N 0, moving T1 to the head of the

queue CQx does not require to abort T3. T1 is now the �rst transaction in all the

queues, but it is a remote transaction. Therefore, no transaction is executing at

N 0. When the commit message of T1 arrives at N 0, T1 is executed, committed

and removed from both queues. Then, T2 will start executing again. When T2
is to-delivered and completely executed, a commit message with its updates will

be sent, and T2 will be removed from CQy.

7

3.4 The NODO Algorithm

The algorithm has been structured according to the di�erent phases in a transac-

tion's execution: a transaction is opt-delivered, to-delivered, completes execution,

and commits. As usual, we assume access to the queue is regulated by locks and

latches [GR93].

There are also some restrictions on when certain events may happen. For in-

stance, a transaction cannot commit before it has been executed and to-delivered.

Each transaction has two state variables to ensure this behavior: The execution

state of a transaction can be active (as soon as it is queued) or executed (when its

execution has �nished). A transaction can only become executed at the site where

it is local. The delivery state can be pending (it has not been to-delivered yet)

or committable (it has been to-delivered). When a transaction is opt-delivered

its state is set to active and pending.

In the following we assume that whenever a transaction is local and the

�rst one in any of its queues, the corresponding operations are submitted for

execution.

Upon Opt-delivery of Ti:

Mark Ti as active and pending

For each con
ict class Cx 2 CTi

Append Ti to the queue CQx

EndFor

Upon complete execution of Ti:

If Ti is marked as committable then

Broadcast a commit message with WSTi
Else

Mark Ti as executed

EndIf

Upon TO-delivery of Ti:

Mark Ti as committable

If Ti is executed then

Broadcast a commit message with WSTi
Else (Ti has not �nished yet or is not local)
For each Cx 2 CTi

If First(CQx) = Tj ^ Local(Tj)

^ Pending(Tj) then

Abort Tj
Mark Tj as active

EndIf

Schedule Ti before the �rst transaction

marked pending in CQx

EndFor

EndIf

Upon receiving a commit message with WSTi :

If not Local (Ti) then

8

Delay until Ti becomes committable

For each Cx 2 CTi

When Ti = First(CQx)

apply the updates of WSTi
corresponding to Cx to the database

Remove Ti from CQx

EndFor

Else

Remove Ti from all CTi

EndIf

Commit Ti

We assume that each of the phases is done in an atomic step. This means, for

instance, that adding a transaction to the di�erent queues during opt-delivery

or rescheduling transactions during to-delivery is not interleaved with any other

action. Note that aborting a transaction simply involves discarding the shadow

copy. The transaction is kept in the queues but in di�erent positions.

The commit message is sent once the transaction has been to-delivered and

executed at the local site. Nevertheless, the commit message can arrive to other

sites before the transaction has been to-delivered at that site. In that case, the

de�nitive order is not yet known, and hence, the transaction cannot commit at

that site to prevent con
icting serialization orders. For this reason the process-

ing of the commit message at a remote site is delayed until the corresponding

transaction has been to-delivered at that site. Later, when the transaction has

been to-delivered and it is at the head of its queues, the updates sent with the

commit message are applied to the database and the transaction committed.

4 Reducing Transaction Aborts

4.1 The Problem

In the Nodo algorithm, a mismatch between the local optimistic order and the

total order involving an executed local transaction results in the local transaction

being aborted (if the misordered transactions are con
icting). Note, however,

that the abort rate is not necessarily very high since for this to happen, the

transactions must con
ict, appear in the system at about the same time, and

the site where the mismatch occurs must be the local site where the aborted

transaction was executing. In all other cases there are no transaction aborts,

only reschedulings. Nevertheless, network congestion and high loads can quickly

lead to messages not being spontaneously ordered and, thus, to increasing abort

rates. To avoid this problem, the Nodo algorithm can be optimized by reducing

the number of aborted transactions even further.

4.2 A solution

The way to avoid aborting local transactions is to take advantage of the fact that

Nodo is, to certain extent, a master copy algorithm (remote sites only install

9

updates in the proper order). With this, a local site can unilaterally decide to

change the serialization order of two local transactions (i.e., not following the

de�nitive order) and follow the tentative order. This reduces the abort rate, and

thus increases throughput and decreases transaction latency. To guarantee cor-

rectness, the local site must inform the rest of the sites about the new execution

order. No extra messages are needed since this information can be sent in the

commit message.

Special care must be taken with transactions that belong to a non-unitary

con
ict class (e.g., CTi = fCx; Cyg). We will see that a site can only follow the

tentative order T1 !OPT T2 instead of the de�nitive order T2 !TO T1 if T1's

con
ict class CT1 is a subset of T2's con
ict class CT2 Otherwise, inconsistencies

could occur. We call this new algorithm Reordering as the serialization order

imposed by the de�nitive order might be changed for the tentative one.

4.3 Example

Assume a database with two basic con
ict classes Cx and Cy . Site N is the

master of the con
ict classes fCxg and fCx; Cyg.N
0 is the master of con
ict class

fCyg. To show how reordering takes place, assume there are three transactions

CT1 = CT3 = fCx; Cyg, and CT2 = fCxg. All three transactions are local to N .

The tentative order at both sites is T2; T3; T1. The de�nitive order is T1; T2; T3.

After opt-delivering all transactions they are ordered as follows at both sites:

QCx : T2; T3; T1
QCy : T3; T1

At site N , T2 and T3 can start execution (they are local and are at the

head of one of their queues). Assume that T1 is to-delivered at this stage. In

the Nodo algorithm, T1 would be put at the head of both queues which can

only be done by aborting T2 and T3. This abort is, however, unnecessary since

N controls the execution of these transactions and the other sites are simply

waiting to be told what to do. Thus, N can simply decide not to follow the total

order but the tentative order. When such a reordering occurs, T1 becomes the

serializer transaction of T2 and T3. Note that this can only be done because the

transactions are local at N and the con
ict classes of T2 and T3 are a subset of

T1's con
ict class.

Site N 0 has no information about the reordering. Thus, not knowing better,

when T1 is to-delivered atN
0, N 0 will reschedule T1 before T2 and T3 as described

in the Nodo algorithm. With this, the queues at both sites look at follows:
Queues at site N: Queues at site N':

QCx : T2; T3; T1 QCx : T1; T2; T3
QCy : T3; T1 QCy : T1; T3

In the meanwhile, at N , T2 does not need to wait to be to-delivered. Being at

the head of the queue and with its serializer transaction to-delivered, the commit

message for T2 can be sent once T2 is completely executed (thereby reducing the

latency for T2). The commit message of T2 also contains the identi�er of the

serializer transaction T1. With this, when N 0 receives the commit message, it

10

realizes that a reordering took place. N 0 will then reorder T2 ahead of T1 and

mark it committable. N 0, however, only reschedules T2 when T1 has been to-

delivered in order to ensure one-copy serializability. The rescheduling of T3 will

take place when the commit message for T3 arrives, which will also contain T1
as the serializer transaction. In order to prevent that T2 and T3 are executed

in the wrong order at N 0, commit messages are sent in FIFO order (note, that

FIFO is not needed in the Nodo algorithm).

As this example suggests, there are restrictions to when reordering can take

place. To see this, consider three transactions CT1 = fCxg, CT2 = fCyg and

CT3 = fCx; Cyg. T1 and T3 are local to N , T2 is local to N
0. Now assume that

the tentative order at N is T3, T1, T2 and at N 0 it is T1, T2, T3. The de�nitive

total order is T1, T2, T3. After all three transactions have been opt-delivered the

queues at both sites look as follows:

Queues at site N: Queues at site N':

QCx : T3; T1 QCx : T1; T3
QCy : T3; T2 QCy : T2; T3

Since T3 is local and it is at the head of its queues, N starts executing T3. For

the same reasons,N 0 starts executing T2. When T1 is to-delivered atN , T3 cannot

be reordered before T1. Assume this would be done. T3 would commit and the

commit message would be sent to N 0. Now assume the following scenario at N 0.

Before N 0 receives the commit message for T3 both T1 and T2 are to-delivered.

Since T2 is local, it can commit when it is executed (and the commit is sent to

N). Hence, by the time the commit message for T3 arrives, N
0 will produce the

serialization order T2 ! T3. At N , however, when it receives T2's commit, it

has already committed T3. Thus, N has the serialization order T3 ! T2, which

contradicts the serialization order at N 0.

This situation arises because CT1 = fCx; Cyg is not a subset of CT3 = fCxg
and, therefore, T1 is not a serializer transaction for T3. In order to clarify why

subclasses (i.e., the reordered transaction con
ict class is a subset, or subclass,

of the one of the serializer transaction) are needed for reordering, assume that

T1 also accesses Cy (with this, CT3 � CT1). In this case, the queues are:

Queues at site N: Queues at site N':

QCx : T3; T1 QCx : T1; T3
QCy : T3; T1; T2 QCy : T1; T2; T3

The subclass property guarantees that T1 con
icts with any transaction with

which T3 con
icts. Hence, T1 and T2 con
ict and N 0 will delay the execution

and commitment of T2 until the commit message of T1 is delivered. As the

commit message of the reordered transaction T3 will arrive before the one of

T1, T3 will be committed before T1 and thus before T2 solving the previous

problem. This means, that both N and N 0 will produce the same serialization

order T3 ! T1 ! T2.

11

4.4 REORDERING Algorithm

In general, the Reordering algorithm is similar to Nodo except in a few points

(In the following we omit the actions upon opt-delivery since they are they same

as in the Nodo algorithm).

Upon complete execution of Ti:

If Ti is marked as committable then

Broadcast a commit message (WSTi;Serializer(Ti))

Else

Mark Ti as executed

EndIf

Upon to-delivery of transaction Ti:

If : Committed(Ti) ^ : Committable(Ti) then

(Ti has not been reordered)
If Local(Ti) then

If Ti is marked executed then

Broadcast a commit message (WSTi;Ti)

Else (Ti has not �nished yet)
Let AS = fTj jCTj \ CTi 6= ; ^ CTj * CTi

^ 9Cx 2 CTj \ CTi . Tj = First(CQx)

^ Pending(Tj) ^ Local(Tj)g
For each Tj 2 AS

(abort con
icting transactions that cannot
be reordered)
Abort Tj and mark it as active

EndFor

(try to reorder transactions)
Let RS = fTj jCTj � CTi ^ Tj !opt Ti

^ Pending(Tj) ^ Local(Tj)g
For each Tj 2 RS [fTig in opt-delivery order

Mark Tj as committable

Associate Ti to Tj as serializer transaction

Schedule Tj before the �rst transaction

pending in all CQxjTj 2 Cx

EndFor

EndIf

Else (It is a remote transaction)
Mark Ti committable

For each con
ict class Cx 2 CTi

If Tj = First(CQx) ^ Pending(Tj)

^ Local(Tj) then

Abort Tj and mark it as active

EndIf

Schedule Ti before the �rst transaction

marked as pending in queue CQx

EndFor

EndIf

Else (the transaction has been reordered)

12

Ignore the message

EndIf

Upon receiving a commit message with WSTi;Tj :

If not Local(Ti) then

Delay until Tj is committable

If Ti 6= Tj then

Mark Ti as committable

EndIf

EndIf

For each Cx 2 CTi

If not Local(Ti) then

If Ti 6= Tj then

Reschedule Ti just before Tj in CQx

EndIf

When Ti becomes the �rst in CQx

apply the updates of WSTi;Tj
EndIf

Remove Ti from CQx

EndFor

Commit Ti

The commit message must now contain the identi�er of the serializer trans-

action and follow a FIFO order.

As in Nodo, when a transaction Ti is to-delivered, the transaction is marked

as committable. At Ti's local site, any non to-delivered local transaction Tj whose

con
ict class CTj is a subset of CTi and that precedes Ti in the queues (reorder

set RS) is marked as committable (since now the commit order is no longer the

de�nitive but the tentative order). Thus, it is possible that when a reordered

transaction is to-delivered the transaction is already marked as committable

or even has been committed. In this case the to-delivery message is ignored.

Local non to-delivered con
icting transactions that cannot be reordered and have

started execution are aborted (abort set, AS). When the to-delivered transaction

is remote, the algorithm behaves as the Nodo algorithm.

A remote reordered transaction Ti cannot commit at a site until its serializer

transaction is to-delivered at that site. When this happens, Ti is rescheduled be-

fore its serializer transaction. The rescheduling together with the FIFO ordering

ensure that remote transactions will commit at all sites in the same order in

which they did at the local site.

5 Dealing with Failures

5.1 View Changes

In our system, each site has a copy of all data. Thus, each site acts as a primary

for the con
ict classes it owns and as a backup for all other con
ict classes. In

the event of site failures, it is just a matter of selecting the new master site for

13

the con
ict classes residing in the failed node. The same mechanism could be

used for load balancing across nodes by dynamically reassigning the master node

of hot-spot con
ict classes.

A simple policy is to assign the con
ict classes of the failed node to the

�rst site in the new view. That way all nodes have an easy way to know who

is the new master for those con
ict classes. The new master node, since it also

has the transactions the failed node received, will execute and commit those

transactions that are still uncommitted after the view change, including those

that were already queued when the view change message was delivered. As the

new master, it becomes responsible for the execution and sending the commit

message with the corresponding updates.

This master replacement algorithm guarantees the availability of transactions

in the presence of failures. That is, a transaction will commit as far as there is

at least one available site.

5.2 Consistency

The degree of consistency across sites in a failure case depends on the properties

of the multicast messages used to send transactions to all sites.

For both algorithms, transaction messages must be uniformly multicast. If

that is not the case, i.e., transaction messages are just reliably multicast, incon-

sistencies may arise. With reliable multicast it is possible for the master of a

con
ict class to deliver a transaction to itself, execute it, send the commit mes-

sage and crash. The sites in the new view could then receive the commit message

for a transaction they do not know about and, therefore, cannot process in any

way. This is not possible with uniform reliable multicast since the master will

only execute the transaction after all available sites have received the transaction

and thus, they will be able to take over in the event of the master crash.

In the Nodo algorithm, commit messages do not have to be uniform since

they are a mere con�rmation (con
icting transactions are always committed in

the total order). Moreover, in order to reduce transaction latency, local trans-

actions can be committed before multicasting the commit message, instead of

committing when the commit message is delivered. The worst that can hap-

pen in this scenario is that a master commits a transaction and fails before the

commit message reaches the other sites. When a new master takes over, it will

execute the transaction again, send a new commit message, and the transaction

will commit across the system. As the total order is always followed in the Nodo

algorithm, inconsistencies cannot arise.

In the Reordering algorithm, commit messages must be uniform since mas-

ter sites can reorder transactions. If the commit message is not uniform, a master

can reorder a transaction, send the commit message and then crash. If the rest

of the replicas do not see the commit message, they will use a di�erent seri-

alization order (as the failed node's optimistic order is unknown to the other

sites). Uniform message delivery avoids this because the master will not commit

a transaction before the commit message has been delivered at all sites.

14

Upon recovery, a failed site must synchronize its state with that of the avail-

able sites. In practice, this can be accomplished by installing a snapshot of the

database as of the time of the view change. From now on, the recovered site will

receive all the messages delivered after the view change.

6 Correctness

In this section we prove the safety and liveness properties of the two algorithms.

The safety property is based on one-copy serializability [BG83]. The liveness

property states that any to-delivered transaction will eventually commit.

6.1 Basics

There are several facts that help to prove the correctness of the algorithms. First,

since transactions are enqueued (respectively rescheduled) in all corresponding

queues in one atomic step, there is no interleaving between transactions. Thus,

all sites produce serializable histories. Moreover, the order in which con
icting

transactions commit matches the total order. In addition, the proofs that follow

assume histories encompassing several views. When talking about correctness

(e.g., con
ict equivalence between histories), we will refer to the correctness of

available nodes.

6.2 Correctness of NODO

Since each site produces serializable histories, it su�ces to show that the histories

of all sites are con
ict equivalent. This can be done by using the total order as

a guideline.

De�nition 1 (Direct con
ict). Two transactions T1 and T2 are in direct con-

ict if they are serialized with respect to each other, T1 �! T2, and there are no

transactions serialized between them: @T3 j T1 �! T3 �! T2.

Lemma 1 (Total order and Serializability). Let HN be the history produced

at site N , let T1; T2 be two directly con
icting transactions in HN . If T1 �!TO

T2 then T1 �!HN
T2.

Proof (lemma 1): Assume the lemma does not hold, i.e., there is a pair of

transactions T1; T2 such that T1 �!HN
T2 but T2 �!TO T1. The fact that T2

precedes T1 in the total order means that T2 was to-delivered before T1. Since

T1 and T2 are in direct con
ict, they must have at least one con
ict class in

common. In other words, there was at least one queue where both transactions

had entries. If T1 �!HN
T2, then the entry for T1 must have been ahead in the

queue. If T1 was the �rst transaction, the Nodo algorithm would have aborted

T1 and rescheduled after T2. If T1 was not the �rst in the queue, the Nodo

algorithm would have put T2 ahead of T1 in the queue. In both cases this would

result in T2 �!HN
T1 which contradicts the initial assumption. 2

15

Lemma 2 (Con
ict equivalence). For any two sites, N; N 0, running the

Nodo algorithm, HN is con
ict equivalent to HN 0 .

Proof: (lemma 2) From Lemma 1, all pairs of directly con
icting transactions

in both HN and HN 0 are ordered according to the total order. Thus, HN and

HN 0 are con
ict equivalent since they are over the same set of transactions and

order con
icting transactions in the same way. 2

Theorem 1 (1CPSR (NODO)). The history produced by the Nodo algo-

rithm is one copy serializable.

Proof: (theorem 1) From Lemma 2, the histories of all available sites are con
ict

equivalent. Moreover, they are all serializable. Thus, the global history is one

copy serializable. 2

6.3 Liveness of NODO

Theorem 2 (Liveness of NODO). The Nodo algorithm ensures that each

to-delivered transaction Ti eventually commits in the absence of catastrophic

failures. 2

Proof: (theorem 2) The theorem is proved by induction on the position n of Ti
in the total order.

Induction Basis: Let Ti be the �rst to-delivered transaction. Upon to-delivery,

each site would place Ti at the head of all its queues. Thus, Ti's master can

execute and commit Ti, and then send the commit message to the remote sites.

Remote sites will apply the updates and also commit Ti.

Induction Hypothesis: The theorem holds for the to-delivered transactions with

positions n � k, for some k � 1, in the de�nitive total order, i.e., all transactions

that have at most k � 1 preceding transactions will eventually commit.

Induction Step: Assume that transaction Ti is at position n = k+1 in the de�ni-

tive total order when it is to-delivered. Each node places Ti in the corresponding

queues after any committable transaction (to-delivered before Ti) and before any

pending transaction (not yet to-delivered). All committable transactions that are

now ordered before Ti have lower positions in the de�nitive total order. Hence,

they will all commit according to the induction hypothesis and be removed from

the queues. With this, Ti will eventually be the �rst in each of its queues and,

from the induction basis, eventually commit.

For the induction basis and the induction step, if the master fails before the

other sites have received the commit, a new master will reexecute the transaction

and resend the commit message. 2

16

6.4 Consistency of NODO

Failed sites obviously do not receive the same transactions as available sites. Let

T be the subset of transactions to-delivered to a node before it failed.

Theorem 3 (Consistency of failed sites). All transactions, Ti, Ti 2 T ,
that are committed at a failed node N are committed at all available nodes.

Moreover, the committed projection of the history in N is con
ict equivalent to

the committed projection of the history of any of the available nodes when this

history is restricted to the transactions in T . 2

Proof: (theorem 3) We have to show that committed transactions at N are also

committed at the available sites: For a transaction to be committed anywhere, it

must have been to-delivered. Thus, all transactions in T have been to-delivered

and all available sites know about them. If the transaction was not local at N ,

then N must have received a commit message. The other available sites have

either received this commit message (and therefore also commit the transaction)

or will commit the transaction when the new master takes over, executes the

transaction again, and send the commit message. If they do not receive this

second message, it is because the new master also failed. Then another master

will take over and repeat the procedure. Since we are assuming there are some

available nodes, eventually one of these nodes will become the master and the

transaction will commit. If the transaction was local at N , the same argument

applies.

The equivalence of histories follows directly from Lemma 1. 2

6.5 Correctness of REORDERING

In the Reordering algorithm it is not possible to use the total order as a guide-

line since a site might decide to reorder transactions. Nevertheless, each site still

produces serializable histories. If we can prove that all these histories are con-

ict equivalent, then the Reordering algorithm produces one copy serializable

histories.

We start by proving that transactions not involved in a reordering can not

get in between the serializer and the transaction being reordered. Let Ts be the

serializer transaction of the transactions in the set TTs .

Lemma 3 (Reordered). A reordered transaction Ti is always serialized before

its serializer transaction Ts, that is, if Ti 2 TTs then Ti �! Ts.

Proof (lemma 3):

It follows trivially from the algorithm. 2

Lemma 4 (Serializer). In the Reordering algorithm, and for all transac-

tions Ti; Ti 2 TTs there is no transaction Tj ; Tj 62 TTs , such that Ti �! Tj �!
Ts.

17

Proof (lemma 4): Assume that N is the master site where the reordering takes

place. Since Ts is the serializer of Ti, Ti �!OPT Ts, and Ts �!TO Ti. Addition-

ally, from Lemma 3 Ti �! Ts. There are two cases to consider: (a) Tj �!TO Ts
and (b) Ts �!TO Tj .

Case (a): since Tj is to-delivered before Ts, N will reorder the queues so that Tj
is before Ti, and Ti is before Ts. With Tj ahead of their queues, Ti and Ts cannot

be committed until Tj commits. Thus, Tj cannot be serialized in between Ti and

Ts.

Case (b): since Ts is to-delivered before Tj and Ti 62 TTs , all sites will put Ts
ahead of Tj in the queues (Tj cannot have committed because it has not yet been

to-delivered), if it was not the case. Since CTi � CTs , this e�ectively prevents

transactions from getting in between Ti and Ts. Any transaction Tj trying to do

so will con
ict with Ts and since Ts has been to-delivered before Tj , and Tj has

to wait until Ts commits. By that time, Ti will have committed at its master site

and its commit message will have been delivered and processed at all sites before

the one of Ts. Therefore, the �nal serialization order will be Ti �! Ts �! Tj .

2

Lemma 5 (Con
ict Equivalence). For any two sites, N; N 0, running the

Reordering algorithm, HN is con
ict equivalent to HN 0 .

Proof: (lemma 5) For two histories to be equivalent, they must have the same

transactions and order con
icting transactions in the same way. Since we assume

both N and N 0 to be available, they both see the same transactions. To see

that con
icting operations are ordered in the same way there are four cases to

consider. Let T1 and T2 be two transactions involved in a direct con
ict and let

CT1 and CT2 be their con
ict classes. We can distinguish several cases:

� CT1 � CT2 and T1 and T2 have the same masterN 00. Assume �rst T2 �!TO T1:

(a) If N 00 reorders T1 and T2 with respect to the total order, then, from

Lemma 4, no transaction Ti 62 TT2 can be serialized in between. The commit for

T1 will be sent before the commit for T2 and in FIFO order. Hence, all sites will

then execute T1 before T2.

(b) If N 00 follows the total order to commit T1 and T2, then other sites cannot

change this order. The argument is similar to that in Lemma 1 and revolves about

the order in which transactions are committed at all sites.

Assume now T1 �!TO T2:

(c) If CT1 = CT2 then cases (a) and (b) apply exchanging T1 and T2.

(d) Otherwise CT1 � CT2 . In this case, N 00 has no choice but to commit T1
and T2 in to-delivery order (the rules for reordering do not apply). From here,

and using the same type of reasoning as in Lemma 1, it follows that all sites

must commit T1 and T2 in the same order.

� CT1 � CT2 and either T1 and T2 do not have the same master, or CT1 \CT2 6= ;
and neither CT1 * CT2 nor CT2 * CT1 .

18

(e) If T1 or T2 are involved in any type of reordering at their nodes, Lemma 4

guarantees that there will be no interleavings between the transactions involved

in the reordering and the other transaction. Thus, one transaction will be com-

mitted before the other at all sites and, therefore, all sites will produce the same

serialization order.

(f) If T1 and T2 are not involved in any reordering, then upon to-delivery,

both of them will be rescheduled in the same (total) order at all sites and then

committed. From here it follows that all sites will produce the same serialization

order.

� CT1 \ CT2 = ;.

(g) If there is no serialization order between T1 and T2 then they do not need

to be considered for equivalence.

(h) If there is a serialization order between T1 and T2, it can only be indirect.

Assume that in N : T1 : : : �! Ti �! Ti+1 �! : : : T2. Between each pair of

transactions in that sequence, there is a direct con
ict. Thus, for each pair, the

above cases apply and all sites order the pair in the same way. From here it

follows that T1 and T2 are also ordered in the same way at all sites. 2

Theorem 4 (1CPSR (REORDERING)). The history produced by the Re-

ordering algorithm is one copy serializable.

Proof: (theorem 4) From Lemma 5, all histories are con
ict equivalent. More-

over, they are all serializable. Thus, the global history is one copy serializable.

6.6 Liveness of REORDERING

Theorem 5 (Liveness of REORDERING). The Reordering algorithm

ensures that each to-delivered transaction Ti eventually commits in the absence

of catastrophic failures. 2

Proof: (theorem 5) The proof is similar to the liveness proof of the Nodo

algorithm and is an induction on the position n of Ti in the de�nitive total

order.

Induction Basis: Let Ti be the �rst to-delivered transaction. Upon to-delivery,

each remote site will place Ti at the head of all its queues. At the local node,

there might be some reordered transactions ordered before Ti and Ti is their

serializer. All these can be executed and committed, so that Ti will eventually

be executed and committed. Remote sites will apply the updates of the reordered

transactions and Ti in FIFO order and hence, they will also commit Ti.

Induction Hypothesis: The theorem holds for the to-delivered transactions with

positions n � k, for some k � 1, in the de�nitive total order, i.e., all transactions

that have at most k � 1 preceding transactions will eventually commit.

Induction Step: Assume that transaction Ti is at position n = k + 1 in the

de�nitive total order when it is to-delivered. There are two cases:

19

a) Ti is reordered. This means there is a serializer transaction Tj with a

position n � k in the total order and Ti is ordered before Tj . Since Tj , according

to the induction hypothesis, commits and Ti is executed and committed before

Tj at all sites, the theorem holds.

b) Ti is not a reordered transaction. Ti will be rescheduled after any commit-

table transaction and before any pending transaction. There exist two types of

committable transactions.

i. Not reordered transactions: They have a position n � k and will therefore

commit and be removed from the queues according to the induction hypothesis.

ii. Reordered transactions: Each reordered transaction that is serialized by

transaction Tk 6= Ti will commit before Tk and Tk will commit according to

the induction hypothesis. All transactions Tj 2 TTi (i.e., Ti is the serializer)

are ordered directly before Ti in the queues (Lemma 3). Let Tk be the �rst not

reordered transaction before this set of reordered transactions. Tk will eventually

commit according to the induction hypothesis, and therefore also all transactions

in TTi and Ti itself.
Failures lead to masters reassignment but do not introduce di�erent cases to

the above ones. 2

6.7 Consistency of REORDERING

Again, let T be the subset of transactions to-delivered to a node before it failed.

Theorem 6 (Consistency of failed sites). All transactions, Ti, Ti 2 T ,
that are committed at a failed node N are committed at all available nodes.

Moreover, the committed projection of the history in N , is con
ict equivalent to

the committed projection of the history of any of the available nodes when this

history is restricted to the transactions in T . 2

Proof: (theorem 6) Since both transaction and commit messages are sent with

uniform reliable multicast, all transactions and their commit messages in T have

been to-delivered to all available sites and can therefore commit at all sites.

To prove the equivalence of histories, the theorem follows directly from Lemma

4. 2

7 Conclusions

In spite of the amount of work invested in developing eager data replication

protocols, the vast majority of known protocols have never been used in practice.

It has only been recently that viable solutions have started to appear based

on a tighter synergy between group communication primitives and transaction

management techniques. Unfortunatley, to make this approach entirely feasible,

it is crucial to demonstrate that it can be improved and optimized for realistic

application environments. In this paper, we have proposed two such replication

protocols for cluster based applications. These protocols solve the scalability

20

problem of existing solutions and minimize the number of aborted transactions,

thereby greatly improving the overall throughput and response time. We are

con�dent that these protocols will form the basis of future database replication

techniques. We are currently implementing and experimentally evaluating the

protocols and, as part of future work, we will deploy a web farm with a replicated

database built upon these protocols.

References

[AAAS97] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Exploiting Atomic

Broadcast in Replicated Databases. In Euro-Par Conf., Passau, Germany,

August 1997.

[BG83] P. A. Bernstein and N. Goodman. The Failure and Recovery Problem for

Replicated Databases. In Proc. of 2nd Symp. on Principles of Distributed
Computing, pages 114{122, 1983.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control
and Recovery in Database Systems. Addison Wesley, Reading, MA, 1987.

[BR93] K. P. Birman and R. Van Renesse. Reliable Distributed Computing with
Isis Toolkit. IEEE Computer Society Press, Los Alamitos, CA, 1993.

[GHOS96] J. Gray, P. Helland, P. O'Neil, and D. Shasha. The Dangers of Replication

and a Solution. In Proc. of the SIGMOD, pages 173{182, Montreal, 1996.

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, San Mateo, CA, 1993.

[HT93] V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Prob-

lems. In S. Mullender, editor, Distributed Systems, pages 97{145. Addison
Wesley, Reading, MA, 1993.

[KA] B. Kemme and G. Alonso. A new approach to developing and implement-

ing eager database replication protocols. ACM Transactions on Database
Systems, to appear.

[KA98] B. Kemme and G. Alonso. A Suite of Database Replication Protocols

based on Group Communication Primitives. In Proc. of 18th Int. Conf. on
Distributed Computing Systems (ICDCS), pages 156{163. IEEE Computer

Society Press, 1998.

[KPAS99a] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Processing Transactions

over Optimistic Atomic Broadcast Protocols. In Proc. of 19th Int. Conf. on
Distributed Computing Systems (ICDCS), pages 424{431. IEEE Computer

Society Press, 1999.

[KPAS99b] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Processing Transactions

over Optimistic Atomic Broadcast Protocols. Technical Report 325, ETH

Z�urich, Department of Computer Science, 1999.

[PGS98] F. Pedone, R. Guerraoui, and A. Schiper. Exploiting Atomic Broadcast in

Replicated Databases. In D. J. Pritchard and J. Reeve, editors, Proc. of
4th International Euro-Par Conference, volume LNCS 1470, pages 513{520.

Springer, September 1998.

[PS98] F. Pedone and A. Schiper. Optimistic Atomic Broadcast. In S. Kutten, ed-

itor, Proc. of 12th Distributed Computing Conference, volume LNCS 1499,

pages 318{332. Springer, September 1998.

