VisMod: A Beginner-Friendly Programming Environment*

Ricardo Jiménez-Peris
Marta Patino-Martinez
Jorge Pacios-Martinez

Universidad Politécnica de Madrid
Facultad de Informaética

28660 Boadilla del Monte (Madrid), Spain
{rjimenez, mpatino}@fi.upm.es

Keywords: Visual Debugging, User Interfaces, In-
terpreters, Laboratory Environments, CS1-2.

ABSTRACT

Although modern programming environments offer nice
features that enhance the development and debugging
of programs, they generally do not favor learning. Stu-
dents need environments that facilitate the understand-
ing of the dynamic aspects of programming. In this
work, we present a programming environment, VisMod,
to assist the student in learning programming as well
as understanding his/her programs. VisMod visualizes
the execution of programs. It allows students to de-
velop their programs and see how they work. It also
enforces a good programming style, checking style er-
rors like functions with side effects.

1 INTRODUCTION

First year programming students often have great diffi-
culties in understanding their programs’ behavior upon
executing it. The confusion is even stronger when more
advanced topics, such as recursion, or dynamic memory
are tackled. Students do not have interactive tools that
facilitate the development and debugging of programs.
Programming environments and debuggers show pro-
grams with these elements in a non-intuitive fashion.
Commercial debuggers are void of pedagogical features
that could be useful to beginning programmers. The
debuggers are written for developers of professional ap-
plications and do little to assist the new comers in their
learning process.

Visual tools facilitate learning programming. They
increase the comprehension of the internal workings of
the program. Several tools have been developed for

*This work has been partially funded by the Spanish Re-
search Council(CICYT), contract number TIC98-1032-C03-01
and the Madrid Regional Council (CAM), contract number
CAM-07T/0012/1998.

that purpose. These include program animators, al-
gorithm animators and computer science concept ani-
mators. A program animator [2,7] provides the user
with a detailed, highly visual view of the source code
of a program in execution. Algorithm animators do not
in general display source code, but provide a graphical
picture of an algorithm in action [3 —6, 8]. They are too
complicated for novices, especially if they have to build
the animations. Alternatively, the teacher could build
them, which definitely takes a considerable amount of
time and effort.

Computer science concept animators are specialized
in animating a particular algorithm or kind of algo-
rithms. For instance the CABTO system [1] (Computer
Animation of Binary Tree Operations) animates basic
algorithms for binary trees.

We have developed an environment, VisMod that
animates programs in Modula-2. VisMod allows the
student to concentrate on the development of the pro-
gram, with no special attention to visualization, and
then visualize its execution. Some environments are
not intended to develop programs, but only visualize a
set of program libraries [2], while others have limited
graphical facilities [7].

VisMod provides most of the facilities found in
commercial programming environments and is also
equipped with an integrated visual debugger and a com-
piler that enforces good programming techniques. For
instance, it does not allow functions with side effects,
and displays the code with a predefined type of inden-
tation.

VisMod can be used in lectures, laboratories and at
home. It runs on PCs that are widely available for stu-
dents. We have been using them in our lectures and
our students have developed their projects with it. We
find that students using VisMod understand and learn
more quickly than students who are in traditional envi-
ronments do.

In this paper, we present the properties of VisMod.
We have divided them into three categories. Section 2
presents the environment. In Section 3, we illustrate the
visual debugger, and in Section 4, we explain additional
features. We conclude with some thoughts about our
experience with VisMod.



File Break Window In-sOut Helyp

current : =other

current: 2
other: 4
counter: 9

1 In

PPPPTYITYH5550444447777060602222222274

7%9 Dxd 0 45 Pxd HxD 2x9

Figure 1: Compression of a number string

2 THE ENVIRONMENT

VisMod is a turbo-like environment. The main window
has pull-down menus. The File pull-down menu pro-
vides access to existing files and the creation of new
ones. Editing of a file is done like in other text ed-
itors. The compiler can be invoked from the environ-
ment clicking on the corresponding menu. After compil-
ing, the program is ready to run. There are three ways
of running a program: step-by-step, until a breakpoint
or completely. In the step-by-step mode, the user con-
trols the statement that is to be executed next. When
some parts of a program are understood, there is no
need to run in a step-by-step mode anymore. By set-
ting breakpoints, one can focus on those parts of the
code of interest only. The interaction with the user can
be limited to input data, while the program is visual-
ized, choosing the run mode until end.

Three kinds of windows can be displayed on the
screen at any given time, during the execution of a
program. One window is for the code, associated vari-
ables (variables of the main program and subprograms)
and parameters. A second window displays the in-
put/output activity and the third is devoted to dynamic
memory. The code window has two panes, one with the
program and other with variables declared in the scope
of the code. In the code pane, a cursor bar highlights the
statement in execution, while in the state pane, pairs
of identifiers and values are shown. Every time a sub-
program is called, a new window is displayed with its
code, parameters and local variables. We also visualize
structured types, like arrays and records.

Pointer variables and parameters are not visualized
in the state pane, but in the dynamic memory window.

Pointers are represented with boxes and addresses with
arrows. Boxes are labeled with the variable or param-
eter identifier. To distinguish among pointer parame-
ters and variables of different (usually recursive) calls, a
number corresponding to the window label of the sub-
program activation is appended to the parameter iden-
tifier.

Unlike other environments that have only one win-
dow for input/output, the input/output window in Vis-
Mod can be split into two different windows in order to
distinguish input data from output (fig. 1).

Beginning programmers often have problems in re-
membering the syntax and semantics of the program-
ming language [7]. For this reason, the environment
also includes a contextual help system of the language
syntax and semantics. It assists students in the devel-
opment of programs.

3 VISUAL DEBUGGER

As previously mentioned, commercial programming en-
vironments and debuggers are not adequate tools for
understanding the execution of programs. They were
not designed for beginners and even advanced students
are at a loss when the applications require more so-
phisticated data structures and nontrivial programming
techniques. The programming environments generally
provide poor visualization facilities. For instance, they
do not display dynamic memory in a friendly way. Very
often, they merely show memory addresses, and need-
less to say that one is not interested in addresses when
trees, stacks or other data structures are being manip-
ulated. Students are familiar with a very different kind
of representation. In books, as well as in class, arrows



Fichero

Remoue(list)

#1 Entrada~Salida

DISPOSE (aux)

Break Wentana Entrada-Salida

fiyuda

Figure 2: Iterative removal of a list

represent addresses, and the object pointed at are rep-
resented by rectangles. This is how dynamic memory is
represented in VisMod.

To illustrate how dynamic memory is displayed, let
us consider the problem of removing a list. In figure 2
there are two code windows, one for the program and
the second for the procedure. There is also a window
showing dynamic memory (including pointer variables
and arguments). It corresponds to the time when the
first item in the list is going to be disposed (the cursor
bar shows the next statement to be executed). Notice
that there is no state pane, as the only variables and
parameters are pointers. Pointer variables are shown in
the dynamic memory area, aux and l. Pointers passed
by reference are shown providing a list of name equiv-
alences (1#4 = list#2 in fig. 2). Parameters are only
shown while the call is pending. When the call finishes,
the box with the code also disappears and the cursor bar
in the previous window moves to the next statement.

This kind of representation is automatically pro-
vided for linear data structures and trees.

Recursion is another difficult topic in which debug-
gers do not help much. The representation is gener-
ally the same as with non-recursive subprograms in that
when a recursive call is made the cursor moves to the
beginning of the subprogram, but pending calls are not
shown. When the subprogram finishes, the same code
is shown several times with the cursor moving up and
down. In VisMod, every time a recursive call is made a
new window with the subprogram code and data is dis-
played. Each window has a cursor bar, so it is very easy
to see the state of each pending call. Furthermore, the
students easily understand the iteration behind recur-
sive calls as they see the unfolded windows, each with its

own data. Let us consider the traditional factorial prob-
lem to illustrate recursion. As can be seen in figure 3,
VisMod shows the state of pending calls, and when each
call finishes, the value returned is shown on the right of
the statement that returns the value. In commercial
debuggers, one has to evaluate the returned expression
(if this facility is available) before executing the return
sentence. For beginners this constitutes an obstacle so,
they will not be able to follow the code.

VisMod not only visualizes simple recursion, but can
also handle mutually recursive subprograms. In figure
4, two mutually recursive functions, even and odd, are
shown.

As can be seen in the next example, VisMod can also
visualize more complicated algorithms that use both dy-
namic memory and recursion.

Figure 5 illustrates how a new element is appended
at the end of a list. Pointer parameters of the differ-
ent calls to Append are distinguished by their names
followed by the window number of the activation (e.g.
1(#4) indicates parameter | of the activation shown in
window #4).

Algorithms involving recursion and dynamic mem-
ory are difficult to follow for beginners. The situation
becomes even worse when there are pointer parameters
passed by reference or there are statements after the
recursive call. As has been shown, these problems are
more easily understood using VisMod.

4 OTHER FEATURES

Students learn more readily language syntax and se-
mantics than programming style. Methodological issues
are more challenging to teach than mere syntax. In our



Fichero

x:=Factorial(n)

RETURN m

#1 Entrada~Salida

Break Wentana Entrada-Salida

fiyuda

RETURN m

RETURN 1

Figure 3: Recursive factorial

environment, some of these methodological issues get
the same treatment as the syntax of the language. Vis-
Mod checks these issues and warns the user as if they
were syntax errors.

One of the most common issues is the use of global
variables instead of parameters. Most beginner pro-
grammers use them just because they do not under-
stand parameter-passing mechanisms. This situation
is treated as a semantic error. Of course, this can be
useful for certain algorithms, but it can be overridden
changing a configuration file. There is no menu option
to prevent students from changing it.

VisMod also checks that all variables in an expres-
sion have been previously initialized. It also makes sure
that all the declared variables are used.

In Modula-2, the RETURN statement is used to re-
turn the result of a function. This statement should be
used just before the end of the function, but students
tend to misuse it. For instance, they use it to exit from
loops because they do not know how to write non-simple
conditions. VisMod checks that they are only used as
the final statement in a function or in all the branches
of a selection statement, if it is the last one. In other
words, it makes sure that the return statement does not
prevent the execution of any ulterior statement.

Another problem found with beginners is that of in-
dentation of programs. Most of them write programs
as if it were narrative text, incurring a total lack of legi-
bility. VisMod displays the code using a pretty printer.
Thus, the students see their programs written with the
same style as that used in lectures. As the student pro-
gresses, the pretty printer can be switched off, so that
the environment will show the student’s own code. This
option is also indicated in the configuration file.

Finally, students tend to compare Boolean variables
and expressions with the values true or false when they
want to check their value. They write:

IF logical = TRUE THEN...

VisMod also checks this kind of redundancy and an
error message is displayed.

5 CONCLUSIONS

A visual environment for learning has been presented.
This environment is not only user-friendly, but also
beginner-friendly; it has the properties of commercial
environments and also animates programs. It is ade-
quate to use during lectures and also for students to
run their own programs and see how they work. It runs
on a widespread platform, the Intel-based PCs. It can
be used by beginning programmers as well as by more
advanced students.

We have used VisMod in several of our classes, and
have received very positive feedback from students. Al-
though we have no formal statistics, we find that they
learn concepts such as parameter passing mechanisms,
scope rules, recursion and dynamic memory faster and
better than with traditional settings or other packages.
Consequently, they have fewer difficulties with projects,
which involve most of these concepts.

We plan to add new features to VisMod, such as re-
verse execution, more templates to visualize data struc-
tures such as graphs and other kinds of trees and adapt
it to other languages like Pascal and Ada.



Fichero VUentana

UriteCa

v 3

1 Entradar-Salida

EntradarSalida fyuda

RETURN TRUE

Figure 4: Odd and Even Mutually Recursive Functions

ACKNOWLEDMENTS

We wish to thank to Sami Khuri for his help and com-
ments, and to the rest of the members of the VisMod
team: Carlos Illana and Jestis Maria Romén.

REFERENCES

1. G. M. Barnes and G. A. Kind. Visual Simulations
of Data Structures During Lecture. Proceedings of
the 18th SIGCSE Technical Symposium on Com-
puter Science Education, 1987, 267-276.

2. M. R. Birch, C. M. Boroni, et al. Dynalab:
A Dynamic Computer Science Laboratory Infras-
tructure Featuring Program Animation. Proceed-
ings of the 26th SIGCSE Technical Symposium on
Computer Science Education, 1995, 29-33.

3. M. H. Brown. Exploring Algorithms Using Balsa-
II. IEEE Computer. May 1988.

4. M. H. Brown. Zeus: A System for Algorithm An-
imation and Multi-View Editing. Proceedings of
the IEEE Workshop on Visual Languages, 1991,
4-9.

5. E. I. Giannotti. Algorithm Animator: A Tool for
Programming Learning. Proceedings of the 18th
SIGCSE Technical Symposium on Computer Sci-
ence Education, 1987, 308-314.

6. T. Naps. Algorithm Visualization in Computer
Science Laboratories. Proceedings of the 21th
SIGCSE Technical Symposium on Computer Sci-
ence Education, 1990, 105-110.

7. I. Sanders and H. Gopal. AAPT: Algorithm An-
imator and Programming Toolbox. SIGCSE Bul-
letin 23, 4 (Dec. 1991), 41-47.

8. J. Stasko. Tango: A Framework and System
for Algorithm Animation. IEEE Computer 23, 9
(1990), 27-39.

Ricardo Jiménez-Peris holds a MS degree in
computer science from Universidad Politécnica de
Madrid (1990). His interests include fault-tolerance,
transactional systems, distributed systems, visual-
ization and computer science education. He has
been assistant professor in computer science at
Universidad Politécnica de Madrid since 1990. He
is member of the Association for Computing Machinery.

Marta Patino-Martinez received a MS degree in
computer science in 1990 from Universidad Politécnica
de Valencia. Her interests include fault-tolerance,
transactional systems, distributed systems, visualiza-
tion and computer science education. She has been
assistant professor in computer science at Universidad
Politécnica de Madrid since 1990. She is member of the
Association for Computing Machinery and the IEEE
Computer Society.

Jorge Pacios-Martinez holds a degree in Com-
puter Science from the Universidad Politécnica de
Madrid. He is currently software engineer at GMV
(Group of Flight Mechanics). His research interests
include compilers, visual debuggers and programming
environments.



Fichero Break Wentana Entrada-Salida fAyuda

Append(lis

value:

Append (1™ .n

Append (1™ .n 1" .next :=NIL
elem: 5

elem: 5

Figure 5: Recursively append an element to a list



