
Multithreaded Rendezvous:

A Design Pattern for Distributed Rendezvous
�

Ricardo Jim�enez-Peris

Marta Pati~no-Mart��nez

Sergio Ar�evalo

Universidad Polit�ecnica de Madrid

Facultad de Inform�atica

28660 Boadilla del Monte (Madrid), Spain
frjimenez, mpatino, sarevalog@�.upm.es

Keywords: Design Patterns, Rendezvous, Multi-
threaded servers, Distributed Systems, Object-Oriented
Technologies.

ABSTRACT

In this paper we describe a design pattern for dis-
tributed rendezvous. We propose a variant of ren-
dezvous that supports multiple server threads, each
one devoted to a di�erent client. On the server side
a ForwarderObject is in charge of forwarding calls to
the corresponding servers threads. This design pat-
tern encapsulates both the forwarding algorithm and
the server interface, so both can be changed indepen-
dently. Guidelines are given on how to implement the
design pattern in Ada 95, taking advantage of language
speci�c features such as streams. The Multithreaded
Rendezvous pattern has been successfully applied in the
implementation of Transactional Drago, an Ada exten-
sion to program fault-tolerant distributed applications.

1 INTRODUCTION

Rendezvous has been widely used to synchronize con-
current programs. In a concurrent program the server
o�ers a set of services that clients call. In order to
provide those services the client and server must syn-
chronize, that is, the client should ask for a service and
the server must be ready to execute it. Although ren-
dezvous is provided as a basic mechanism in some lan-
guages, like Ada, distributed rendezvous is not. Using
it in a distributed environment will be natural, espe-
cially for those that are used to work with it to build
concurrent programs, but also to transform concurrent
applications based on rendezvous into distributed ones.

�This work has been partially funded by the Spanish Re-
search Council(CICYT), contract number TIC98-1032-C03-01
and the Madrid Regional Council (CAM), contract number
CAM-07T/0012/1998.

In applications based on rendezvous, when a client
requests a service to a server, it issues a call to an en-
try point of the server with some parameters and then
blocks till the server sends a reply with the service re-
sults. On the other hand, the server has its own 
ow of
execution and at some points it accepts requests. When
the server wants to accept a request for a particular
service, it will block till a request for that service is re-
ceived from a client. After that, the server executes the
service, sends the results back to the client and then
continues execution. Thus, rendezvous allows imposing
a protocol of calls to clients. Distributed rendezvous
implies that requests and replies may cross the network
from the client node to the serve node.

The implementation of distributed rendezvous (�g.
1) is very similar to the implementation of the well-
known RPC model [3]. In this implementation, when
a server is designed, its services (or entry points) are
speci�ed by their name, and information about their pa-
rameters (types and modes) is also provided. From that
speci�cation, client and server stubs are automatically
generated. The server stub is linked with the server and
the client stub is linked with any client willing to use
that server.

The client stub must o�er exactly the same interface
the server o�ers. The entry point implementation in
the client stub must be able to locate the server, send
it a message with the parameters of the call (
attened).
Then, it waits for the server reply. When it is received
it un
attens the results and returns them to the client.
Thus, the client makes calls to the remote server as it
they were local.

The server stub will have its own 
ow of control
that receives messages from clients and then �nds out
which entry point is the message aimed to. It creates a
task that knows how to un
atten the message and how
to call the entry point. This kind of tasks represents
the client on the server side. When the server �nishes
the service, it returns the result to that task and the
task sends a message back to the client stub with the

attened results.

When clients and servers interact by means of ren-
dezvous, servers accept calls from di�erent clients in
their code. However, there are situations where it is
not interesting that the same server accepts interleaving
calls from di�erent clients. For instance, in a transac-



Figure 1: Multithreaded Rendezvous Pattern

tional setting, services are called from di�erent transac-
tions. In order to prevent transactions from seeing un-
committed results from other transactions, calls must
be processed by di�erent threads. Thus, sometimes it
is adequate to extend the semantics of rendezvous as
follows: every time a new client calls a server, a new
thread with the code of the server is created. In this
way, the server code will deal with a single client, re-
ducing the complexity of the server. This approach is
taken in [9].

In this paper it is presented Multithreaded

Rendezvous, a design pattern for distributed ren-
dezvous, and guidelines to implement it in Ada 95. This
design pattern has been used in the implementation of
the language Transactional Drago [8], an Ada extension
to build fault-tolerant distributed applications that of-
fers rendezvous as synchronization mechanism for dis-
tributed transactions [9]. Next section presents the
Multithreaded Rendezvous design pattern and a sug-
gested implementation in Ada 95. Section 3 presents
its application in Transactional Drago. Related design
patterns are presented in section 4 and �nally, and some
conclusions in section 5. In the rest of the paper it is as-
sumed basic knowledge of Ada 95 and design patterns.

2 THE Multithreaded Rendezvous DESIGN
PATTERN

In traditional rendezvous, servers are single-threaded,
that is, a single 
ow of control processes the requests
from all the clients. In our approach the server is mul-
tithreaded, that is, there is a thread per client, so it is
needed an object to manage the di�erent server threads.
This object will accept messages sent to the server and
will forward them to the corresponding server thread.
It will also be in charge of creating server threads as
needed. We will call it forwarder object, as it forwards
messages to the corresponding server thread. As all the
calls go through the forwarder, it can apply forwarding
policies. For instance, it can forward calls as soon as
they arrive or forward them sequentially (i.e. until a
call is not processed, the next call is not forwarded).
The proposed design pattern will deal with the follow-

ing elements: calls, 
attening (marshalling) and un
at-
tening (unmarshalling) of parameters, communication
layer, forwarders and server threads.

Additionally, the Multithreaded Rendezvous de-
sign pattern aims the following goals:

� To encapsulate the forwarding policy. Thus, new
forwarding policies can be introduced without
changing existing servers.

� To encapsulate server interfaces and types. At the
same time, the forwarder must be able to create
server tasks of the appropriate type and store ref-
erences to them.

� The forwarder must be able to identify clients from
calls. This requirement and the previous one will
allow adding new kinds of servers reusing existing
forwarders.

� To encapsulate the communication layer, so it can
be changed without disturbing clients and servers.

� To ensure type checking of server calls when the
client is compiled.

� To minimize the e�ort of writing new servers, re-
ducing the extra code to be written. In this way,
server code can be written without any auxiliary
tools, such as stub generators, etc.

� The server code should be the same as if it were
not distributed, so it can use linguistic mechanisms
to receive the calls (e.g. select statement, count
attribute, etc.).

In the next subsections, we will motivate and de-
scribe the di�erent classes participating in the design
pattern.

2.1 The StubObject

When a client calls a service, the call and the param-
eters must be 
attened to travel across the network.
They must contain information about which server en-
try is called as well as in and in out parameters. When



calls are processed they must return the out and in out

parameters. We make use of Ada 95 streams [4, 1] to

atten the parameters as the implementation language,
Ada 95, will help us with this task, providing default
Input and Output routines for every declared type, for

attening and un
attening data.

As the activity of 
attening the call, send it across
the network, wait for the reply and un
atten the reply
must be done for every call, we will encapsulate it in a
StubObject. The StubObject will need two interfaces
one for the client side and another one for the server
side. It could be split into two di�erent classes but this
approach does not o�er new advantages, whilst it will
increase the complexity of the system. The following
interface will su�ce:

type StubObject is abstract tagged private;

type StubObjectAccess is

access all StubObject'Class;

type KindOfStubType is (local, remote);

-- Initializes a Stub as local or remote.

procedure Init(

stub : out StubObject;

kind : in KindOfStubType:= local );

-- Flattens the call and sends it to the

-- remote site. It waits until the reply

-- is received, and then unflattens the

-- call and returns the results. This

-- method is used only on the client side.

procedure Call(

stub : in StubObject;

aCall : in out CallObjectAccess );

-- Receives a call from a client and returns

-- the call unflattened.

procedure Accept(

stub : in StubObject;

aCall : in out CallObjectAccess );

-- Flattens the result of the call and sends

-- back the reply to the client.

procedure Reply(

stub : in StubObject;

aCall : in CallObjectAccess );

In order to ensure type checking on the client side,
concrete StubObjects are introduced for each server.
That is, a concrete server stub will only receive calls
expected by that server (see StubX and StubY in �g.
4). It must be noticed that the behavior of concrete
classes methods will be the same than in the abstract
class, for this reason they just propagate the call to the
inherited method of StubObject, but their interface is
stricter (i.e. StubX methods will not accept parameters
that do not derive from ServerXCall).

2.2 The Comm Class

One of our goals is to encapsulate the communication
layer so it can be changed without disturbing clients
and servers. We will implement it as a stream, thus it
integrates smoothly with the 
attening and un
attening

process (by means of the Input and Output operations).
This is achieved with the following class:

type Comm is abstract new Root_Stream_Type

with private;

type Stream_Access is access 'Class;

-- Creates a Comm object associated to a

-- network address.

procedure Init(

aComm : out Comm;

address : in String );

-- Send a request to the server (client side

-- method). A call must be flattened (with

-- Output) before calling this method.

procedure SendRequest(

aComm : in out Comm );

-- Receive a request from a client (server

-- side method). Then the call can be

-- unflattened with Input.

procedure ReceiveRequest(

aComm : in out Comm );

-- Send a reply to a client (server side

-- method). A reply call must be flattened

-- (with Output) before calling this method.

procedure SendReply(

aComm : in out Comm );

-- Receive a reply from the server (client

-- side method). Then the reply call can be

-- unflattened with Input.

procedure ReceiveReply(

aComm : in out Comm );

2.3 The CallObject, ForwarderObject, Courier-

Task and ServerTaskObject

Clients and the ForwarderObject will interact by
means of StubObjects. However, there is a problem to
be solved. The forwarder receives calls from clients, but
as it will deal with di�erent servers, it must not know
the server interface neither its type, thus servers can
be added without modifying the forwarder. Then, how
can it forward a call to a server? On the other hand,
the client knows the server interface, and knows which
entry it wants to call, so we need to encapsulate this
knowledge in some class and let this class to make the
call to the server thread. With this aim in mind we
have created an abstract class CallObject from which
concrete calls will inherit. However, this is not a trivial
task and there are still some problems to solve:

1. The concrete CallObject will know the server in-
terface, which entry to call and with which param-
eters, but it will not know which concrete task to
call, as this is only known by the forwarder.

2. On the other hand, the forwarder does not know
the server interface nor which call to make.

3. The forwarder must be able to create server tasks
but without knowing their type. And what it is
more, it must store references to them to be able



Figure 2: ServerTaskObject Hierarchy

to forward them future calls and apply forwarding
policies.

4. The forwarder must be able to identify clients from
calls in order to be able to associate them to the
right server thread.

The �rst problem is solved providing CallObject

with a method to set the destination task. The for-
warder will call this method to inform the CallObject

which server task to call.
The second one is solved by letting the concrete

CallObject to make the call. It must provide a method
to call the destination task previously set. After the for-
warder has set the destination task, it will invoke the
MakeCall method, that in turn it will call the entry of
the server task.

The third problem is solved converting the
CallObject into an Abstract Factory [5] of server
tasks. The Abstract Factory design pattern allows a
client to be independent of how concrete products are
created and represented. We achieve this by provid-
ing CallObject with a method to create a server task,
StartServerTask. It must be noted that we are using
the concrete CallObject tag (that it is known, due to
Ada streams are typed) to create a TaskServerObject

of the appropriate type, that is, to redispatch to the
right StartServerTask.

The fourth problem is solved by providing the
CallObject with two methods one to set the client iden-
ti�er (SetID) and another consult it (GetID). Then, the
forwarder can ask for the client identi�er corresponding
to a call (as the concrete CallObject is the only that
has such knowledge), in order to decide to which server
thread associate the call.

Another detail to be solved is related to task typing
in Ada. Ada tasks are not tagged types, but just limited
types. Thus, it is not possible to derive task interfaces
from a root type. We have overcome the problem by
creating an abstract root null class, ServerTaskObject
from which concrete classes inherit (�g. 2) and ex-
tend its state with a particular server task. As this
abstract class is known by the forwarder, it can store
references to ServerTaskObjects. Concrete classes ex-
tending ServerTaskObject will provide a method to ob-
tain a pointer to the contained task, in order to be called

by some object that knows its interface. In our pattern,
the object that knows the server task interface is the
concrete CallObject corresponding to such a server.

Taking into account all the problems and the pro-
posed solutions we have devised the following interface
for the CallObject class:

type CallObject is abstract tagged

limited private;

type CallObjectAccess is access all

CallObject'Class;

-- Creates a ServerTaskObject.

function StartServerTask(

aCall : CallObject )

return ServerTaskObjectAccess is abstract;

-- Sets the server task to be called.

procedure SetDestinationTask(

call : in out CallObject;

server : in ServerTaskObjectAccess );

-- Gets the client identifier.

procedure GetID(

call : in CallObject;

id : out ClientIdentifier );

-- Sets the client identifier.

procedure SetID(

call : in out CallObject;

id : in ClientIdentifier );

-- Call the service requested by the client in

-- the previously set server task.

procedure MakeCall(

call : in out CallObject ) is abstract;

-- Flattens the call. The object knows in which

-- side is (client or server side). It will

-- flatten in parameters on the client side and

-- out parameters on the server side.

procedure Output(

stream : access

Ada.Streams.Root_Stream_Type'Class;



Figure 3: Call Hierarchy

Figure 4: Forwarder and Stub

obj : in CallObject );

-- Unflattens the call. The object knows in which

-- side is (client or server side). It will

-- unflatten in parameters on the server side and

-- out parameters on the client side.

procedure Input(

stream : access

Ada.Streams.Root_Stream_Type'Class;

obj : out CallObject );

When instantiating CallObject for a concrete server
it is convenient to do it in two steps (see Call hierarchy
in �gure 3). The reason is that the StartServerTask

method is the same for all the CallObjects of a con-
crete server. First, it can be overridden in a class that
is still abstract, ServerXCall; second, from this class
the concrete CallObjects can be derived overriding the
MakeCall, Input and Output methods.

The ForwarderObject has a very simple interface.
Forwarders are initialized with a concrete StubObject.

The Process method processes a message, that is, ac-
cepts the message from the stub and forwards it to the
appropriate server task if it exists. If the server task
does not exists, it creates a new one, storing a reference
to it to forward future calls to it. In order to prevent
the blocking of the ForwarderObject during the exe-
cution of calls, the ForwarderObject creates an aux-
iliary task to actually make the call, a CourierTask.
This task has two parameters, the CallObject (whose
MakeCall method must call) and the StubObject to re-
ply to the client. This is the Ada 95 interface of the
ForwarderObject:

type ForwarderObject is abstract tagged private;

type ForwarderObjectAccess is access

ForwarderObject;

-- Creates a forwarder, associating it

-- a server stub.

procedure Init(

forwarder : out ForwarderObject;



my_stub : in StubObjectAccess );

-- Accepts a message and forwards it to the

-- appropriate server task. If it does not

-- exist, then it is created.

procedure Process(

forwarder : in ForwarderObject );

task type CourierTaskType(

stub : StubObjectAccess;

aCall : CallObjectAccess) is

end CourierTaskType;

type CourierTaskAccessType is access

CourierTaskType;

2.4 Putting all Together

Every time a server X is added, the server programmer
must program just a ServerXCall hierarchy, as well
as the corresponding ServerXTaskObject. The pro-
grammer will also derive a concrete StubObject whose
method parameters will be ServerXCalls. Their code
will just call their corresponding inherited methods of
the root abstract class StubObject. The server main
program will just instance a concrete ForwarderObject
and associate a StubObject for server X to it. How-
ever, the programmer can be freed from the last to tasks
(writing a concrete stub object and main program) by
creating two generic packages.

Adding a new ForwarderObject is even simpler. It
su�ces to write a new concrete forwarder and instan-
tiate it in the server main program where we want to
use it. A client program will just import the appropri-
ate package where the ServerXCall hierarchy and the
StubXObject are de�ned. A call to a service of server
X will be like:

Call(myStubX, CallA(params));

Now, it is possible to compose all the pieces of the
system. Figures 2, 3 and 4 show the class hierarchies
and their relationships. To recapitulate, in �gure 6 it is
shown the complete interaction among object instances
when a call is made and the server task for the client is
already created.

Notice that the concrete CallObject

(aServerXCallA) represented in the interaction
diagram (�g. 6) represents two di�erent instances
distinguished by the brackets, one on the client side
(the outer one) and other on the server side (the inner
one). The instance on the server side has a copy of the
state (including the tag) of the one on the client side.
In the �gure, it has been represented as a single object
because logically it is a single object that travels from
the client side to the server side and when the call
completes returns to the client side. The interaction
would be slightly di�erent when a client calls for the
�rst time to the server, as the forwarder will �rst create
a server task by calling the StartServerTask method
of the call object.

2.5 The Call Path

To summarize we describe the whole path of a call
(�g. 5):

1 The client makes the request to the client stub.

2 The client stub 
attens the call and submits it using
the comm object.

3 The 
attened call crosses the network.

4 The server stub gets the call from the comm object
and un
attens it.

5 The forwarder takes the call from the local stub. If a
server thread does not exist for the client, it creates
a new one.

6 The forwarder creates a courier task to make the call
asynchronously.

7 The courier task makes the call and the server thread
accepts it (rendezvous).

Once the call is processed the result returns through
this path:

a The rendezvous between the courier task and the
server thread �nishes.

b The courier task returns the results of the call to the
server stub.

c The server stub 
attens the call and sends it back by
means of comm.

d The returned call with the results cross the network.

e The client stub un
attens the call.

f The client unblocks and gets the call results.

3 APPLYING THE Multithreaded Rendezvous

DESIGN PATTERN TO TRANSAC-

TIONAL DRAGO

Transactional Drago [8] is an Ada and Drago [7] exten-
sion to program fault-tolerant distributed applications.
It implements the group transaction model, an inte-
gration of the group and nested transaction paradigms.
Groups are made up of agents, the unit of distribution
in Transactional Drago. There are two kinds of groups:
cooperative and replicated. Cooperative groups per-
mit programmers to express parallelism and so increase
throughput. Replicated groups allow for the program-
ming of fault-tolerant applications according to the ac-
tive replication model. Agents are similar to Ada tasks,
they o�er a set of remote entries and that are accepted
(by means of an accept statement) in the agent code.
Agents of a group are usually located at di�erent nodes
of the system to speedup the services of that group and
at the same time provide fault tolerance. Agents com-
municate using distributed rendezvous. Group calls are
multicasted to all the agents of the server group; the
agents will eventually accept the call, execute the ser-
vice and return the result and control to the caller.
When several client transactions call the same group,
the calls are not accepted by the same thread. A new
thread in each agent will be created to accept all the
calls from each client transaction in order to prevent
transactions from seeing uncommitted results of other
transactions.



Figure 5: Call Path

Transactional Drago is preprocessed to Ada 95
and service calls from two libraries: GroupIO [6] and
TransLib. The former provides support for group
communication and the latter for transaction process-
ing. To use the Multithreaded Rendezvous design pat-
tern it is necessary to provide a concrete Comm class,
concrete CallObject classes for the di�erent concrete
ServerObject classes, concrete ServerTaskObjects

and concrete ForwarderObjects.
Let's start with the Comm class. A server in Trans-

actional Drago is a group of agents. Clients call a
server by multicasting the call to all the agents of the
group. The Comm class is a stream, that encapsulates
the multicast communication layer provided by Grou-
pIO. GroupIO only deals with 
attened objects, thus
the Multithreaded Rendezvous design pattern simpli-
�es the marshalling and unmarshalling of the parame-
ters.

In Transactional Drago clients are identi�ed by the
transaction identi�er (tid) of the transaction enclosing
the call to the server. When a concrete CallObject

is created it can know the tid of the client transaction
without forcing the client to set it (calling to SetID).
We have used the task attributes facility provided by
the programming systems annex that allows to asso-
ciate state to tasks and to consult it. So, tasks in
Transactional Drago have their state extended with the
tids of the transactions they are currently executing. In
this way, the call object can �nd out and record which
transaction is issuing the call, so on the remote side the
forwarder will be able to know to which server thread
forward the call.

Two di�erent kinds of forwarders (i.e. forwarding
policies) are used in Transactional Drago. One for co-
operative groups and other for replicated groups. The
forwarder for cooperative groups forwards messages as
they arrive in order to achieve the maximum concur-
rency. However, the forwarder for replicated groups
must guarantee replica determinism. For this reason,
it forwards messages one by one, that is, until a mes-
sage has not been processed it does not forward the next
one. If the forwarder for cooperative groups were used,
and the replicas executed a select statement di�erent
replicas could accept any of the forwarded messages,
thus breaking the determinism.

4 RELATED WORK

There are some design patterns described in [5] related
to our design pattern. The CallObject class together
with the method MakeCall can be considered an appli-
cation of the Command design pattern. The intent of the
Command design pattern is to encapsulate requests as ob-
jects, so they can be used by other objects that do not
know anything about the operation requested or the
receiver of the request. Our CallObject could be as-
similated to Command, MakeCall to Execute, Forwarder
to Invoker, and ServerTask to Receiver. However, we
have had to solve additional problems that do not ap-
pear in the Command design pattern. In particular, the
Forwarder has to know something about the receiver of
the operation, as it has to forward the call to a particu-
lar server thread, while in Command the Invoker does not
know anything about the Receiver. Another impor-
tant di�erence is that Invoker is called by the Client

in Command, while in Multithreaded Rendezvous the
Client and Invoker are both active at the same time
(the client application and the server process).

The Forwarder and its Process method can be
seen as an instance of the Strategy pattern (assim-
ilating the Forwarder to Strategy and Process to
AlgorithmInterface), where the Strategy encapsu-
lated is the Forwarding Policy.

The CallObject class and its method
StartServerTask can be seen as an instance of
the Abstract Factory pattern as they allow the
Forwarder to rely on a concrete CallObject (a
concrete factory) to create a concrete product of the
ServerTaskType.

In [2] it is proposed a programming paradigm for
synchronizing multiple clients and servers, showing how
to forward on entry calls combining class-wide types and
protected objects.

5 DISCUSSION AND CONCLUSIONS

The Multithreaded Rendezvous design pattern can be
applied to very di�erent situations where there is a fron-
tier to cross like a network, di�erent address spaces in
the same site (e.g. the operating system kernel and the
user application spaces, etc.).

The proposed design pattern can also be used
to implement the coordinator/workers model.



Figure 6: Process Call Interaction Diagram

The coordinator role will be represented by the
ForwarderObject. It will distribute work among their
workers (ServerTaskObjects) and it will also create
workers as needed. The GetID method abstracts the
information needed from the call to distribute the work.
In addition, the design pattern slightly modi�ed can
be used in scenarios where a single ForwarderObject

distributes calls for di�erent servers. The key di�culty
for this application is dispatching calls to the right
server task (creating them as needed), and it is already
solved in the proposed design pattern.

In this paper the Multithreaded Rendezvous design
pattern and some implementation guidelines for Ada 95
have been presented. The Multithreaded Rendezvous

design pattern is useful to build distributed client-server
applications whose communication model is rendezvous.
Where di�erent server processes are created for each
client and each server executes a set of services for a
particular client. The Multithreaded Rendezvous de-
sign pattern encapsulates both the forwarding policy
and the server task interface, so both can be modi�ed
independently, thus new servers can be added reusing
existing forwarders. The communication layer is encap-
sulated to allow any communication protocol without
disturbing existing clients and servers. Server calls in
client code are type safe as the client is compiled against
server code. The task of adding servers is light enough
to be done at hand without stub generators. Server
tasks are programmed as if they were to be called lo-
cally. It has also been shown an application of the

Multithreaded Rendezvous design pattern in the im-
plementation of Transactional Drago.

References

[1] M. Ben-Ari. Ada for Software Engineers. John Wi-
ley, 1998.

[2] M. Ben-Ari. Synchronizing Multiple Clients and
Servers. In L. Asplund, editor, Proc. of Conference
on Reliable Systems. Ada-Europe'98, volume LNCS
1411, pages 41{52. Springer, June 1998.

[3] A. D. Birrell and B. J. Nelson. Implementing Re-
mote Procedure Calls. ACM Transactions on Com-
puter Systems, 2(1):39{59, 1984.

[4] N. H. Cohen. Ada as a Second Language. McGraw-
Hill, 1996.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns. Elements of Reusable
Object-Oriented Software. Addison Wesley, 1995.

[6] F. Guerra, J. Miranda, �A. �Alvarez, and S. Ar�evalo.
An Ada Library to Program Fault-Tolerant Dis-
tributed Applications. In K. Hardy and J. Briggs,
editors, Proc. of Reliable Software Technologies,
Ada-Europe'97, volume LNCS 1251, pages 230{243.
Springer, 1997.



[7] J. Miranda, �A. �Alvarez, S. Ar�evalo, and F. Guerra.
Drago: An Ada Extension to Program Fault-
tolerant Distributed Applications. In A. Strohmeier,
editor, Proc. of Reliable Software Technologies, Ada-
Europe'96, volume LNCS 1088, pages 235{246.
Springer, 1996.

[8] M. Pati~no-Mart��nez, R. Jim�enez-Peris, and
S. Ar�evalo. Integrating Groups and Transactions:
A Fault-Tolerant Extension of Ada. In L. Asplund,
editor, Proc. of Int. Conf. on Reliable Software
Technologies, Ada-Europe'98, volume LNCS 1411,
pages 78{89. Springer, June 1998.

[9] M. Pati~no-Mart��nez, R. Jim�enez-Peris, and
S. Ar�evalo. Synchronizing Group Transactions with
Rendezvous in a Distributed Ada Environment. In
Proc. of ACM Symposium on Applied Computing,
pages 2{9. ACM Press, Feb. 1998.

Ricardo Jim�enez-Peris holds a MS degree in
computer science from Universidad Polit�ecnica de
Madrid (1990). He is currently working on TransLib,
an object oriented framework to program fault-tolerant
programming systems. He has been assistant professor
in computer science at Universidad Polit�ecnica de
Madrid since 1990. He is member of the Association
for Computing Machinery.

Marta Pati~no-Mart��nez received a MS de-
gree in computer science in 1990 from Universidad
Polit�ecnica de Valencia. She is currently working on
group transactions, an integration of the transaction
and group communication paradigms. She has been
assistant professor in computer science at Universidad
Polit�ecnica de Madrid since 1990. She is member of the
Association for Computing Machinery and the IEEE
Computer Society.

Sergio Ar�evalo is an associate professor of com-
puter science at Universidad Polit�ecnica de Madrid.
His research interests include distributed systems, fault-
tolerance, operating systems and real-time systems. He
has been visiting researcher at ATT Bell Laboratories
and research fellow in the European Space Agency. He
received a PhD in Computer Science from Universidad
Polit�ecnica de Madrid. He is a member of ACM since
1983.


