
BATCHING: A Design Pattern for Efficient and
Flexible Client-Server Interaction

Marta Patiño1† Francisco J. Ballesteros2� Ricardo Jiménez1†

Sergio Arévalo1† Fabio Kon3‡ Roy H. Campbell3§

1Distributed Operating Systems Group. Technical University of Madrid
2Systems and Communications Group. Carlos III University of Madrid
3Systems Research Group. University of Illinois at Urbana-Champaign

Abstract

What do well-known techniques such as gather/scatter for input/output, code
downloading for system extension, message batching, mobile agents, and deferred
calls for disconnected operation have in common? Despite being rather different
techniques, all of them share a common piece of design (and, possibly, implemen-
tation) as their cornerstone: the BATCHING design pattern.

All techniques mentioned above are designed for applications running across
multiple domains (e.g., multiple processes or multiple nodes in a network). In these
techniques, multiple operations are bundled together and then sent to a different
domain, where they are executed. In some cases, the objective is to reduce the
number of domain-crossings. In other cases, it is to allow for dynamic server
extension.

In this paper, we present the BATCHING pattern, discuss the circumstances in
which the pattern should and should not be used, and identify eight classes of
existing techniques that instantiate it.

1 Introduction

Applications such as code downloading, message batching, gather/scatter and mobile
agents follow the client-server model of interaction. A closer look reveals that all
of them group a set of operations, and submit them to a server for execution. The
submission of operations is aimed at reducing domain-crossings and/or allow dynamic
server extension. For instance, code downloading into operating system kernels is

�Partially supported by Spanish CICYT grant # TIC-98-1032-C03-03.
†Partially supported by the Spanish Research Council CICYT grant # TIC-98-1032-C03-01 and by the

Madrid Regional Research Council grant number CAM-07T/0012/1998.
‡Fabio Kon is supported in part by CAPES, Brazil, proc.# 1405/95-2.
§The Systems Research Group is supported by a grant from the National Science Foundation, NSF 98-

70736.

1

intended to save domain-crossings and at the same time to allow system extension.
Message batching and mobile agents are intended to save domain-crossings.

Consider a program using a file server like that of figure 1. On typical client-server
interaction, the client sends a command (read, write) to the server, waits for the reply,
and then continues.

cat(File aFile, File otherFile) {
while (aFile.read(buf))
write(otherFile.write(buf));

}

Figure 1: Cat Code

Suppose that read and write are handled by the same server and that cross-domain
calls (i.e. calls from client to server) are much heavier than calls made within the server.
Then it would be much more efficient to send the whole while loop to the file server
for execution.

Instead of having multiple cross domain calls (figure 2.a) a single one suffices if
the client sends the code to the server for its execution (figure 2.b). To do so, it is
convenient to extend the file server to allow the execution of programs submitted by
different clients.

ack()

(b)

ack()

ack(buf)

....

(a)

read(f1,buf)

write(f2,buf)

ack()

write(f2,buf)

execute(cat(f1,f2))

Figure 2: Interactions corresponding to read/write services and a cat service

2 The problem

Both cross-domain data traffic and cross-domain call latency have a significant impact
on the efficiency of multi-domain applications. Cross-domain calls and cross-domain
data transfers also happen on centralized environments. For instance, almost every
operating system has a domain boundary between user space and kernel space (both
entering and leaving the kernel requires a domain crossing). An application using

2

multiple processes has a domain boundary between every two of its processes. Besides,
in a distributed system, the network behaves as a domain boundary.

Under many circumstances, unnecessary data transfers occur just because the ob-
ject controlling the operation resides far from the data source and/or the data sink. That
is precisely what happens in the file copy example in the previous section: the client
object performing the copy and the file server objects were placed at different domains.
Thus, data came to the client just to go back to the server.

3 The solution

By batching separate method calls, i.e. transforming them into a single cross-domain
call, one can avoid unnecessary data copying and reduce the number of cross-domain
calls.

Clients can build a program (a “batch call”) and transfer it to the server at once.
The program performs multiple operations on that server even though the client had to
send it only once.

In our example (see figure 2, the interactions for cat), if BATCHING is not used, the
file content has to travel twice across the network. When a cat program is submitted
to the server, however, the file does not leave the server, it is copied locally.

4 Pattern structure

BATCHING, also known as COMPOSITECALL.

4.1 Participants

The class hierarchy corresponding to the BATCHING pattern is shown in figure 3. It
follows the OMT notation [13] variant used in [5].

BatchServer behaves as a façade [5] to services provided by the server. An object
of this class is located on the server side. It supplies interpretation facilities to
service callers, so that clients can send a program to the server side instead of
making direct calls to the server. The execute method is an entry point to the
interpreter [5], which interprets the “batch” program and returns its results to the
client.

ConcreteServer This class is only present on the server side. It provides the set
of entry points that can be called by the client.

Note that the ConcreteServer is actually the class (or the set of classes) one
has in the server side before instantiating the pattern. It is mentioned here for
completeness.

Program is an abstract class that represents the program to be interpreted. Clients
build Program instances and send them to the BatchServer for execution. It
is also responsible for maintaining an associated table of variables. The run

3

// Assuming

// it’s an IntVar

memcpy(bytes,

_the_int,sizeof(int))

// is a CallService1Command...
args = build_args_from_vars(vars)

 ConcreteServer::service1(args) calls[program_counter].run(vars)
while(!terminated())
// is a SequenceInstruction...
// Assuming ConcreteInstruction

ConcreteServer VarTable

Var

ConcreteVar

service1(parms)
service2(parms)

VarTable vars;

Mode mode

BatchServer

Program

ControlStructure

run(vars)
terminate()

run(vars)
terminate()

ConcreteControlStructure

Command

// Assuming Command

ConcreteControlStructure(somePrograms)

execute(vars,aProgram)

run(vars)

terminate()

set(bytes)
get(bytes)

get(bytes)

set(bytes)

terminate()
run(vars)

Figure 3: BATCHING

method of a Program class implements the interpreter needed to run it on the
server.

The Program is also responsible for performing an orderly program termination
when an error occurs. The terminate method is provided as an abstract inter-
face for program termination.

The alternate name for BATCHING, namely, COMPOSITECALL, comes from the
fact that Program, together with the next couple of classes, is an instance of the
COMPOSITE pattern [5].

ControlStructure is a construct made of Programs. Its purpose is to bundle
several Programs together according to some control structure (e.g. sequence,
iteration, etc.).

ConcreteControlStructures represent concrete control structures like condi-
tionals, while constructs, sequences, etc. At the server side, this class is re-
sponsible for executing the concrete control structure represented by the class.

4

ConcreteControlStructure constructors can be used at the client side to build
complex Programs.

Command is a Program which represents a single operation. (It resembles the COM-
MAND pattern shown in [5], hence the name). Examples of concrete Commands
can be arithmetic operations, logic operations, or calls to ConcreteServer entry
points. The only purpose of BATCHING is to bundle several concrete Commands
together using ConcreteControlStructures.

VarTable keeps the variables of the Program. It provides local storage and also
holds any input parameter for the program. Output values from the program
are also kept within the VarTable. The table is built at the client using the set
of input parameters for the Program. Then, it is used within the server, while
the Program is interpreted. The table is finally returned back to the user after
completion of the Program.

There is a variable table per Program (pairs of VarTable and Program are sent
together to the BatchServer). Thus, all components of a concrete Program
share a single variable table so that they can share variables.

Var is an abstract class representing a variable of the program sent to the server. It
has some associated storage (bytes, in the figure). Var instances are kept within
a VarTable. Variables have a mode, which can be either in (parameter given
to the Program), out (result to be given to the user), inout (both), or local
(local variable). By including the mode qualifier, this class can be used for local
variables as well as for input/output parameters.

ConcreteVar is a variable of a concrete type (integer, character, etc.). Its con-
structor is used at the client to declare variables or parameters to be used by the
Program. At the server side, instances of this class are responsible for handling
single, concrete pieces of data used by the program.

4.2 The pattern applied to a file server

The concrete structure of classes for our file server example is shown in figure 4. In-
tuitively, this BATCHING instance simply adds an interpreter (see the INTERPRETER

pattern in [5]) to the file server. That interpreter can execute programs that (1) call
read and write and (2) can use while as a control structure.

We took as an starting point the FileServer class, which provides both read and
write methods to operate on a file.

We simplified the typical interface provided by a file server. A typical file server
would contain several File objects that would supply read and write methods. To
illustrate the pattern in a simple way, we omitted the file being used1.

The BatchFileServer is co-located with the FileServer, providing a new execute
service that supplies an interpreted version of FileServer services. The BatchFileServer
corresponds to the BatchServer in the pattern (see the pattern diagram in figure 3).

1Obtaining a complete implementation is a matter of adding a File class and adding file parameters to
the read and write methods.

5

get(bytes)
set(bytes)

Var

FileServer VarTable

BufferVar

Read Write

run(vars)
terminate()

set(bytes)
get(bytes)

run(vars)

terminate()

VarTable vars;

read(buff)
write(buff)

Mode mode

 instructions)
run(vars)
terminate()

run(vars)
terminate()

run(vars)
terminate()

while(aCond.run(vars))
 aSeq.run(vars)

 calls[current].run(vars)

fetch aBuff from vars
 if (!FileServer::read(aBuff))
 terminate();

run(vars)
terminate()

execute(vars,aProgram)

Program

ControlStructure

SeqCtrlStruct WhileCtrlStruct
SeqCtrlStruct(WhileCtrlStruct(aCond,aSeq)

BatchFileServer

call in sequence

Figure 4: File server BATCHING

The BatchFileServer accepts a Program, which is built in terms of ControlStructures
and Read and Write commands.

To execute

while (read(buf))
write(write(buf));

the Program sent to the BatchFileServer must be made of a WhileCtrlStruct,
using a Read as the condition. The body for the WhileCtrlStruct must be a sequence
made of a single Write command.

Here, WhileCtrlStruct and SeqCtrlStruct correspond to ConcreteControl-
Structures in the pattern. Read and Write match Commands in the pattern. The buffer
used in the read and write operations is handled by a BufferVar class instance, which
corresponds to a ConcreteVar in the pattern.

A client can build a program (accessing the file server) by using constructors pro-
vided by WhileCtrlStruct, SeqCtrlStruct, Read, and Write. This batched call can

6

be submitted later, by the client, to the execute method of the BatchFileServer.

5 Dynamics

When a program is received at the server side, it is deserialized. The interaction that
follows is as shown in figure 5.

FileServerRead Write

 buffer)

 buffer)

SeqCtrlStruct

execute(vars,program)

BatchFileServer Program WhileCtrlStruct

run(vars) run(vars) run(vars)

run(vars)

run(vars)

run(vars)

run(vars)

run(vars)

read(buffer)

write(

read(buffer)

write(

Figure 5: Interaction diagram for a cat program.

6 Implementation issues

We now discuss two important aspects of using BATCHING: how to build programs for
BATCHING and what to do if they fail.

6.1 Composing programs

Programs are made out of statements and variables. In a BATCHING Program, each
statement corresponds to a ConcreteControlStructure or concrete Command. Vari-
ables are instances of a ConcreteVar class. To build a program, clients declare an
object of the Program class and invoke its constructor method.

Ideally, the client side for an instance of BATCHING would be exactly like the code
of a client making direct calls to the server; i.e. like a client not using BATCHING at
all. In practice, ConcreteControlStructure constructors (which are functions) are
used. Thus, code in the client for a Program looks like the code that the user would
write without using the pattern. Command objects are not declared; they are built with
functional constructors.

Revisiting our example, the code for the cat program is shown in figure 6. In
the figure, constructors are functions that build objects within the program. In this
example, SeqCtrlStruct and WhileCtrlStruct are ConcreteControlStructures
of the language. Open, Close, Read, and Write are classes derived from Program and

7

VarTable vars;
Program program;
IntVar f1(vars, local), f2(vars, local);
CharVar car(vars, local);

Program= SeqCtrlStruct((
Open(f1, StringLit("name1")),
Open(f2, StringLit("name2")),
WhileCtrlStruct(Read(f1, car),

Write(f2, car)),
Close(f1),
Close(f2)

));
execute(program, vars);

Figure 6: Program for Cat

clients invoke their constructors to let the Program issue calls into the server. Program
variables are stored in the vars variable table. In this case, f1, f2 and car are local
variables, so their mode is local.

One of the problems of submitting the client code to the server is what happens
when a call fails. The server programmer knows when a server call has failed, so he or
she can decide to terminate the program, in that case. This can be done by calling the
terminate method of the Program class from a run method. However, the client could
wish to continue the program despite any failures. To support this, we have included
two commands in our pattern instances: AbortOnError and DoNotAbortOnError.
They allow the user to switch between the two modes. When AbortOnError has been
called, a call to terminate causes program termination; otherwise it has no effect. In
this way, the client can control the effects of a failed call.

The implementation of terminate depends on both the kind of instruction set be-
ing implemented and on the implementation language. A byte-code based program
can be stopped very easily as there is a main control loop (in the run method), just by
setting a terminated flag to true. Stopping an structured program (e.g. the one used in
our file server example) is a little more complicated. This is due to recursive interpre-
tation: calls to run in Programs propagate calls to the run method of its components.
To stop that program, it is necessary to finish all the nested run calls. Depending on
the implementation language it can be done in a way or another. In a language with
exceptions, like C++ or Ada, it suffices to raise and propagate an exception in the code
of Terminate, catching it in the run code of Program. In languages like C, setjmp
can be used in the top-level run method before calling any other run, and longjmp can
be used, for the same purpose, in the body of terminate.

8

7 Consequences

The pattern has the following benefits:

1. It provides an Abstract machine view of the server. When using BATCHING,
clients no longer perceive servers as a separate set of entry points. Servers are
now perceived as abstract machines. Their instruction set is made of the set of
server entry points, together with some general-purpose control language.

Therefore, it is feasible for users to reuse programs for different BATCHING calls.
Programs that interact with the server can be built, and reused later.

2. It reduces protection-domain crossings, as the cat program did above. If this
is the main motivation to use the pattern, domain crossing (client/server invo-
cation) time must be carefully measured. Whenever complex control structures
are mixed with calls to the server, or when client computations need to be done
between successive calls, the pattern might not pay.

In any case, the time used to build the program must be lower than the time
saved in domain crossing. The latter is approximated by the difference between
the time to perform a cross-domain call and the time to interpret and dispatch a
server call.

3. It reduces the number of messages between clients and servers; provided that the
Program issues repeated calls to the server and the control structure is simple
enough.

Again, the improvement due to the reduced number of messages can be lower
than the overhead due to program construction and interpretation. Therefore,
careful measurement must be done prior to pattern adoption.

4. It decouples client/server interaction from the call mechanism. BATCHING pro-
vides a level of indirection between the client and the server. The client can
perform a call by adding commands to a Program; while the Program can be
transmitted to the server by a means unknown to the client.

5. It decouples client calls from server method invocations. As said before, a client
can perform calls by adding commands to a Program. The resulting Program
can be sent to the server at a different time. Therefore, there is no need for the
client and the server to synchronize in order for the call to be made.

The pattern has the following drawbacks:

1. Client requests might take arbitrary time to complete. A batched program might
lead to a nonterminating program. If server correctness depends on bounded
client requests, it may fail. As an example, a server can use a single thread of
control to service all client requests. Should a Program not terminate, the whole
server would be effectively switched off by a single client.

9

In such case, either avoid using BATCHING, or handle multithreading issues as
a side-effect (i.e., arrange for each Program to use its own thread, using a giant
lock2 to protect non MT-safe servers3.)

2. Security can be compromised. The more complex the command set, the more
likely the server integrity can be compromised due to bugs in the command
interpreter. If high security is an issue, either avoid BATCHING or reduce the
complexity of the command set to the bare minimum.

3. It might slow down the application. When cheap domain crossing is available
and efficiency is the primary objective, using BATCHING might slowdown the
application if the time saved on domain crossings is not enough to compensate
the overhead introduced by BATCHING.

8 Related patterns

Both Program and ControlStructure rely on instances of the INTERPRETER pattern
[5]. Indeed, the interpreter of a Program is behind its run method.

Program, ControlStructure, and Commands make up an instance of the COM-
POSITE pattern [5]. Composite programs, such as Sequence and Conditional, are
aggregates of Assignments, ServerCalls, and other primitive commands.

If an instruction set for a BATCHING language is to be compiled, Program might
include a method to compile itself into a low-level instruction set. Moreover, Programs
should be (de)serialized when transmitted to the server. Once in the server, they can
be verified for correctness. All these tasks can be implemented following the VISITOR

pattern [5].
A server call issued within a Program might fail or trigger an exception. If that

is the case, the whole Program can be aborted and program state transmitted back
to the client—so that the client could fix the cause of the error and resume Program
execution. The MEMENTO pattern [5] can encapsulate the program state while in an
“aborted” state. As said before, such program state can be used to resume the execution
of a failed program (e.g. after handling an exception.)

MEMENTOs can also be helpful for (de)serializing the program during transmission
to the server.

As a program can lead to an endless client request, single threaded or a-request-
at-a-time servers can get into trouble. To accommodate this kind of server so that
BATCHING could be used, the ACTIVEOBJECT [8] and the RENDEZVOUS [7] patterns
can be used.

COMPOSITEMESSAGES can be used to transfer the Program from the client to the
server. The COMPOSITEMESSAGES pattern [14] applies when different components
must exchange messages to perform a given task. It allows grouping several messages
together in an structured fashion (it does with messages what BATCHING does with
server entry-points). In that way, extra latency due to message delivery can be avoided,

2A single lock protecting the entire server. It must be gained prior to any server call and released right
after every server call. Program instructions not calling the server can execute without locking the server.

3Servers not prepared to handle concurrent requests.

10

and components decoupled from the transmission medium. The main difference is that
BATCHING is targeted at the invocation of concrete server-provided services, not at
packaging data structures to be exchanged.

Last but not least, COMPOSEDCOMMAND [16] is similar to BATCHING in that it
bundles several operations into a single one. However, BATCHING is more generic in
spirit.

9 Known uses

Our experience with BATCHING started when we noticed that a single piece of design
had been used to build systems we already knew well. Then we tried to abstract the
core of those systems, extracting the pattern. Once we identified the pattern, we tried
to find some new systems where it could be applied to obtain some benefit. We did so
[1] and obtained substantial performance improvements.

For us, this pattern has been a process where we first learned some “theory” from
existing systems and then applied what we had learned back to “practice.” In this
section we show how existing systems match the pattern described in the previous
sections—hopefully, this will allow a better understanding of the pattern, as happened
in our case. We also include a brief overview of the two systems where we applied the
pattern ourselves with a priori knowledge of the pattern.

Note that the BATCHING design allows a single implementation of the pattern to
handle some of the various applications described below. As the server is specified
every time a Program runs, the same piece of code could perfectly handle most of
the applications shown below. Nevertheless, existing systems, built without a priori
knowledge of the pattern hardly share the common code needed to implement appli-
cations described below (e.g. gather/scatter is always implemented separately from
message batching facilities, when both are provided.)

Operating System extensions by code downloading into the kernel (like in SPIN [4]
and µChoices [9]) can be considered to be an instance of this pattern. These
systems use code downloading as the means to extend system functionality. The
mechanism employed is based on defining new programs, which are expressed
in terms of existing services.

In this case the Program is the extension performed; the set of Concrete-
ControlStructures depends on the extension language; and the run method
is implemented either by delegation to the extension interpreter or by the native
processor (when binary code can be downloaded into the system.)

Agents. An agent is a program sent to a different domain, which usually moves from
one domain to another [12]. The aim is to avoid multiple domain crossings
(or network messages) and also to allow disconnection from the agent home
environment.

Programs built using BATCHING are meant to stay at the server until termination,

11

and they possess no go4 statement. However, BATCHING already includes most
of the machinery needed to implement an agent system. A go statement could
be provided by the command language itself.

Gather/Scatter I/O. Gather/Scatter input/output is yet another example where this
pattern appears. In gather/scatter I/O a list of input or output descriptors is sent
to an I/O device in a single operation. Each descriptor specifies a piece of data
going to (or coming from) the device. Data written is gathered from separate
output buffers. Data read is scattered to separate input buffers. Its major goal is
to save data copies.

In this case, the program is just the descriptor list, where each descriptor can be
supported by a Command. The program run method iterates through the descrip-
tor (i.e., command) list and performs the requested I/O operations. The services
(i.e., commands) are simply Read and Write.

Note how by considering this pattern, gather/scatter I/O could be generalized so
that the I/O device involved does not need to be the same for all descriptors sent
by the user. Moreover, separate Read and Write operations could be bundled in
a single one.

Improving latency in Operating Systems. Many user programs happen to exhibit very
simple system call patterns. That is an opportunity for using BATCHING to save
domain crossings and, therefore, execution time.

As a matter of fact, we have done so by instantiating BATCHING for two systems,
Linux and Off++ [2]. In both systems, we obtained around 25% speedups for a
cat program written with BATCHING [1].

We implemented two new domain-specific languages (i.e., ControlStructures
and Command sets) that allowed users to bundle separate calls into a single one,
like in the cat example of section 1.

The first language we implemented was based on byte-codes. We included just
those commands needed to code loops, conditional branches, and simple arith-
metic. This language was used both on Linux and Off++.

The second language we implemented was a high-level one, designed specifical-
ly for Off++. It includes just the commands needed to Repeat a given operation
n times and to perform a Sequence of operations.

10 Acknowledgments

We are sincerely grateful to our shepherd, Frank Buschmann, and to John Vlissides
whose help was invaluable; this paper owes much to them. We are also grateful to the
members of the “Allerton Patterns Project” group of PLoP’99 for their feedback on the
pattern.

4The go instruction is typical on Agent systems and is meant to trigger the migration of an agent to a
different location.

12

References

[1] F. J. Ballesteros, R. Jiménez-Peris, M. Patiño-Martı́nez, F. Kon, S. Arévalo,
and R. H. Campbell. Using Interpreted CompositeCalls to Improve Operat-
ing System Services. Submitted for publication, 1998. Also available in
http://www.gsyc.inf.uc3m.es/off/interp-os.ps.

[2] Franscisco J. Ballesteros, Fabio Kon, and Roy H. Campbell. A Detailed De-
scription of Off++, a Distributed Adaptable Microkernel. Technical Report
UIUCDCS-R-97-2035, Department of Computer Science, University of Illinois
at Urbana-Champaign, August 1997.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Re-
covery in Database Systems. Addison Wesley, 1987.

[4] B.N. Bershad, S. Savage, P. Pardyak, E.G. Sirer, M. Fiuczynski, D. Becker, S. Eg-
gers, and C. Chambers. Extensibility, safety and performance in the SPIN oper-
ating system. In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles. ACM, December 1995.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns. Elements of Object-Oriented Software. Addison-Wesley, 1995.

[6] J. Gray. Operating Systems: An Advanced Course. Springer, 1978.

[7] R. Jiménez-Peris, M. Patiño-Martı́nez, and S. Arévalo. Multithreaded Ren-
dezvous: A Design Pattern for Distributed Rendezvous. In Proc. of ACM Sympo-
sium on Applied Computing. ACM Press, Feb. 1999.

[8] R. Greg Lavender and Douglas C. Schmidt. Active object – an object behavioral
pattern for concurrent programming. In Proceedings of the Second Pattern Lan-
guages of Programs conference (PLoP)., Monticello, Illinois, September 1995.

[9] Y. Li, S. M. Tan, M. Sefika, R. H. Campbell, and W. S. Liao. Dynamic Cus-
tomization in the µChoices Operating System. In Proceedings of Reflection’96,
San Francisco, April 1996. Reflection’96.

[10] B. Liskov. Distributed Programming in Argus. Communications of the ACM,
31(3):300–312, Mar. 1988.

[11] Ajay Mohindra, Apratim Purakayastha, Deborra Zukowski, , and Murthy De-
varakonda. Programming Network Components Using NetPebbles: An Early
Report. In Proceedings of the 4th USENIX Conference on Object-Oriented Tech-
nologies and Systems, Santa Fe, New Mexico, April 1998. USENIX.

[12] P.E.Clements, Todd Papaioannou, and John Edwards. Aglets: Enabling
the Virtual Enterprise. In Proc. of the Managing Enterprises - Stake-
holders, Engineering, Logistics and Achievement Intl. Conference (ME-
SELA ’97), Loughborough University, UK, 1997. Also available in
http://luckyspc.lboro.ac.uk/Docs/Papers/Mesela97.html.

13

[13] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorenson. Object-Oriented Modeling and Design. Prentice-Hall, 1991.

[14] Aamod Sane and Roy Campbell. Composite Messages: A Structural Pattern
for Communication between Components. In OOPSLA ’95 workshop on design
patterns for concurrent, parallel, and distributed object-oriented systems, 1995.

[15] S. K. Shrivastava, G. N. Dixon, and G. D. Parrington. An Overview of Arjuna:
A Programming System for Reliable Distributed Computing. IEEE Software,
8(1):63–73, Jan. 1991.

[16] Jeniffer Tidwell. Interaction patterns. In Proceedings of PLoP98, 1998.

14

