
AnLex and AnSin:
A Compiler Generator System for Beginners

Marta PatiAo-Martinez, Ricardo Jirrknez-Perk, J. lgnacio CastelbG6mez
Universidad Politbcnica de Madrid

Depto. de Lenguajes y Sistemas InformAticos, Facultad de lnformatica
Campus de Montegancedo s/n, 28660 Boadilla del Monte, Madrid, Spain

{mpatino, rjimenez}@fi.upm.es, nacho@camel.tid.es

Abstract

The study of compiler generators is an integral part of
compiler construction, and for this reason it is customary to
have a programming project entirely devoted to it in
compiler courses. There are many compilers generators,
but their use in a compiler course presents several problems
(e.g. the parsers generated are difficult to understand and to
debug). In this paper, we describe such problems and
present a compiler generator system, AnLex-AnSin, that
solves these problems, and can thus be used in compiler
programming projects.

1. Introduction

Programming a compiler is not an easy task. The different
parts of a compiler are heavily coupled. The size of a
compiler is usually too big for student to handle, and it
takes a long time to program. These problems are bigger
when students face tools that are not designed for them.

To acomplish these problems, some authors [S] propose the
use of compiler writing tools such as Lex [5] and Yacc [4]
in compiler programming projects. Although the use of
these tools or similar ones can be adequate for large
projects, it may not be the best choice in an educational
environment. In particular, there is significant overhead
when learning Lex and Yacc effectively; and the
implementation environment is tied to C and (most likely)
Unix [2]. Due to the difficulties in debugging and
understanding Yacc generated parsers, some authors [6]
have developed tools to visualize them in order to ease
their understanding. Instead of C, a high-level modular
language is desirable for writing a compiler. Modula-2 has
been proposed as an adequate implementation language
[31.
Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

SIGCSE ‘97 CA, USA
0 1997 ACM 0-89791-889-4/97/0002...$3.50

248

Debugging can be a long and time consuming task,
especially if there is no correspondence between what the
programmer writes (a grammar with annotated semantic
actions) and the generated compiler [2]. This is a very
common problem found in most of the parser generators.
This problem is even worse with tabular parsers, where the
syntax analysis and thus, the flow of the parser is codified
in a data structure traversed by an algorithm generated by
the parser generator. For instance, the GNAT Ada-95
compiler uses a recursive descent parser to increase the
legibility and understability of the compiler.

A different approach [8] consist in providing students with
supplementary material in order to allow them to write a
compiler in a single-term course, freeing them of routinary
programming tasks. In particular, the material provided in
[8] consists of a unique label generator, a symbol-table
management module and a string concatenation function.

We have developed AnLex-AnSin, a compiler generator
system designed to be used in a compiler course, that
generates compilers easy to debug and understand. This is
achieved by using a high-level language, Modula-2, as the
implementation language, generating recursive descent
parsers and using a parser description language that is
powerful, easy to understand and use. Furthermore, a set of
libraries is provided to ease the compiler programming
task.

In section 2, the problems found in other scanner and
parser generators are discussed. AnLex, the scanner
generator and AnSin, the parser generator, are presented in
sections 3 and 4, respectively. Our conclusive remarks are
found in section 5.

2. Difficulties with Scanner and Parser Generators

although Lex and Yacc are very powerful tools to generate
:ompilers, they are not adequate for compiler courses, In
his section, we point out some of the problems these tools
Aave when used by students in compiler-writing projects.

l One of the problems is that the implementation
language is C, and thus the generated code inherits the
difficulties of debugging C programs. This problem can be
fixed by using a tool that generates code in a high-level
language with modular facilities.
l Another difficulty is the fact that the code
corresponding to semantic actions cannot be easily
separated from the syntax rules in the parser. It would be
interesting to write the semantic actions without including
code of the implementation language. In this way the parser
description (syntax defmition and semantic actions) would
result in a more legible and thus easier to debug code.
l Yacc is based on LALR grammars. Although LALR
grammars are more powerful than LL grammars, they are
more difficult to understand (and debug). In particular, the
cases that cannot be parsed with LL parsers usually
correspond to errors due to misunderstandings of the
grammar,
l Another problem with LALR grammars is that it is
difficult to propagate inherited attributes through different
rules.
l Tabular parser generators, like Yacc, are more efficient
that recursive descent ones, but are more difficult to debug,
because the structure of the compiler is codified in a data
structure. Recursive descent parsers are easier to debug as
the syntax analysis is translated into implementation
language code; debuggers are more suited to debug this
kind of parsers. This approach has been proposed by some
authors [111.
l To take full advantage of Yacc, one has to deal with
very low level features of C [lo], with the associated
dangers. As compilers are difficult to write, it is better to
avoid the use of low-level programming as it complicates
debugging a lot.
l Lex and Yacc do not incorporate auxiliary libraries to
help in the compiler construction task, and thus, the student
has to write a lot of code. A system providing a set of
auxiliary libraries would allow the student to focus on the
problems of the compiler [8].
l Finally, the lack of correspondence between the code
written by the programmer and the behaviour of the
generated parser complicates the debugging process even
more.

Our approach is to provide a tool that solves these
problems, generating descent recursive parsers in a
modular high-level language, in particular, Modula-2;
providing the student with a set of auxiliary libraries,
allowing him or her to concentrate on the essence of the
compiler. Both, the choice of the implementation language,
and the kind of parser, are aimed to facilitate the debugging
of the generated parser which is one of the main difficulties
encountered by students, Another reason for choosing
Modula-2 is that it is the main language used throughout
the degree program in our university.

249

The second section allows for the declaration of set
constants to ease the token class declarations. It is also
possible to define sets in terms of other sets using set
operations. ANY is a predefmed set containing all non
control and non graphical characters. Some examples of
character set declarations are:

letters = ‘A’..‘2 + ‘a’.. ‘z’.
digits = ‘0123456789’ .
hexDigits = digits + ‘ABCDEF’ .
quote = ““’ .
noQuote = ANY - quote .
extended = CHR(128)..CHR(255) .

The first four examples are self-explanatory. The fifth one
defmes the set of non graphical printable characters

--.. -- - _

In our tool, most of the checlcmgs are done by the parser
generator, and not are delegated to the implementation
language compiler. Thus, the student does not have to
search for most of the errors in the generated parser, but in
the source description. The relationship between the parser
and its description is more direct than in tabular parsers, so
whenever an error is found in the generated parser, it will
be easier to find its corresponding location in the source
parser description. What is more, because it is a high-level
language, the compiler detects more errors than would have
been picked up by the debugging process.

3. AnLex: A Scanner Generator

AnLex is a scanner generator designed to be used in
conjuction with the parser generator AnSin. It generates
Modula-2 code, although it can be configured to generate
code in any other language. We have chosen for AnLex a
syntax similar to Alex’s [7], due to the latter’s clarity. But
otherwise, the two generators are very different.

A scanner description in AnLex is very simple. It consists
of several sections, each one describing some aspect of the
scanner. The structure of a scanner description in AnLex is
as follows:

SCANNER scannerName
[CASE SENSITIVE (ON] OFF)]
CHARACTER SETS {SetDeclaration}
KEYWORDS {KeywordDecZaruction}
TOKEN CLASSES {TokenDeclaration)
SINGLE TOKENS {SingIeTokenDecZarution}
BLANKS = SetExpression

END

The fust section, CASE SENSITIVE, indicates whether
capital letters in identifiers and keywords are significant or
not.

excluding the single quote. The last example defmes the set
of the extended characters. Notice that it is possible to
represent a character by its ASCII code.

Keywords are defmed in the KEYWORDS section. In
order to be referenced in the parser, they must have an
associated identifier. That identifier is generated, by
default, by a naming scheme preventing to introduce each
keyword twice. The associated identifier is equal to the
string it represents, but this name can be changed if needed.
For instance:

start = ‘BEGIN’ -- The name will be start.
‘END’ -- The name will be end.

Tokens are generated as an enumerated type, including
keywords. This prevents to misuse a token in an arithmetic
expression, due to the strong typing of the implementation
language

The TOKEN CLASSES section is useful to describe tokens
that can take different lexemes (e.g. an integer literal, 23,
-235, etc.). Each token class is defined by means of a
regular expression using the EBNF notation [l]. Some
examples are:

integer = [‘+’ 1 ‘-‘I digit {digit}.
ident = letter {letter 1 digit).
realLit = digit {digit) ‘.’ (digit}

[‘E’[‘+’ 1 ‘-‘I digit {digit}]

These examples defme the lexical aspects of integer and
real literals, as well as identifiers in Modula-2.

In some instances, some characters are needed to delimit a
token, but they are not wanted in the lexeme. To exclude
such characters from the lexeme they must appear enclosed
between Q >. For instance:

stringLit = <quote> {noQuote} <quote>

In this example, the quotes delimiting the string literal will
not be included in the lexeme.

In case of ambiguity, scanners usually follow the greedy
criterion, which consists in taking the longest token. (e.g.
I..2 could be the real 1. or the integer 1 and the subrange
token, ..). AnLex is not an exception, but provides a
mechanism to change this criterion: the IF FOLLOWED
BY clause. For instance:

natLit = digit {digit} IF FOLLOWED BY (“.” “.“).
realLit = digit {digit) “.” {digit).

Another ambiguity happens when keywords are included
by another token class, usually the identifier class. To
prevent this, AnLex provides the clause EXCEPT
KEYWORDS, that gives preference to keywords in case of
collision. For example:

ident = letter {digit 1 letter} EXCEPT KEY WORDS.

In the SINGLE TOKENS section, the tokens with only one
possible lexeme are declarated. Examples of this are:

plus = ‘+’
assignment = ‘:=’
ge = ‘>=’
not = CI-IR(126)

Separator characters are defmed in the BLANKS section.
There are predefmed character constants to help in this
declaration, as can be seen in the following example:

BLANKS=“+TAB+CR+LF.

Finally, comment delimiters are declared in the
COMMENTS section. For instance:

COMMENTS FROM ‘(’ ‘*’ TO ‘*’ ‘)’ NESTED
FROM ‘m’ ‘-’ TO LF

In the fast line, MODULAd-like comments are defined,
that is between the delimiters (* and *). Notice that the
clause NESTED allows to indicate that those delimiters can
be nested. In the second one, Ada-like ones are defined.
These are line comments that start with the delimiter -- and
finish at the end of the line.

As previously mentioned, AnLex can be configurated to
generate scanners in any language. This is achieved with a
language that describes how to traverse the data structures
describing the automaton, and which code to generate
during the traversal, but the description of this language is
out of the scope of this paper. This feature can be of
interest to practise in the writing of scanner generators.

The structure of AnLex has been presented. It is a concise,
simple and fairly easy to use. Students just have to identify
the lexical aspects of the source language and describe
them. This makes AnLex a powerful tool, adequate to
program compiler projects.

4. AnSin: A Parser Generator

AnSin is a parser generator that incorporates a language to
describe parsers. The structure of a parser description in
AnSin is as follows:

PARSER parserName
SEMANTICS { SemanticDeclaration }
TERMINALS TerminalsDeclaration
NONTERMINALS NonTerminaZsDecZaration
RULES GrammarRules

END

First of all, semantic actions to be used must be declared in
the SEMANTICS section. In other systems, semantic
actions are usually defined as a literal string containing the
code to be generated. There is no checking on this piece of
code as it is treated as a string literal. In our system, calls to
semantic actions are AnSin code, and thus, they are
checked, that is, to use a semantic action, it must be
previously declared. This helps to structure the parser
description, not allowing to introduce an arbitrary piece of
code, and what is more, it helps to keep a clean description,
since only the grammar and calls to semantic actions
appear. In this way, a grammar rule in the compiler
description will contain just the rule and calls to semantic
actions.

Each declaration indicates the module where the semantic
actions are implemented, the types used, the action names,
and the initialization and fmalization actions (if any). The
type declaration allows the use of a type in the attribute
declaration of non terminals. For instance, a semantic
declaration for a symbol table management could be:

MODULE “SymbolTable” INIT “InitSymbolTable”.
TYPE EntryType.
ACTION NewEntry, LoohupEntry, NewScope, EndScope.

The call to the initialization action is done automatically by
the code generated by AnSin, and it is warranted that this
action will take place before any other action of the module
is called. This allows to keep a clear description of the
parser and avoids to use tricks (more difficult to understand
and debug) to execute such actions. The EntryType will be
useful to declare attributes of that type.

In the TERMINALS section, the terminals to be used are
declared. It is usually included in the terminal list generated
by AnLex (with the INCLUDE command).

The NONTERMINALS section is where non terminals
used in the grammar are declared. Not only the non
terminal names are enumerated, but also their interface is
specified, that is, name and type of inherited and
synthesized attributes. As previously mentioned, action and
attribute types must be declared in the SEMANTICS
section. This section enhances the legibility of the parser
description because the type and name of the attributes are
documented and checked by the parser generator, AnSin.

Another benefit is that AnSin checks that actual attributes
correspond to formal ones (as subprogram parameters).
This kind of errors is not delayed until the generated parser
is compiled and thus marked in its code. On the contrary,
they are shown in the source description of the parser as the
result of its compilation by AnSin. This is very helpful as it
prevents, in most cases, to edit the generated parser to
search the error there, and to look for it in the parser
description. For instance, the non terminal corresponding to
an expression could be declarared as follows:

Expression WITH <IN ExpectedType : StringType,
OUT Expr : GenTreeType > .

where ‘ExpectedType’ is an inherited attribute and ‘Expr’ a
synthetized one. ‘StringType’ and ‘GenTreeType’ are ADTs
from the set of libraries of the system.

Finally, the grammar of the language to be recognized and
the semantic actions to be taken are defmed in the RULES
section. Rules are written using the EBNF notation that
helps to keep them simple and improves their legibility. In
particular it is not necessary to decompose a rule when it
specifies a list of items, as can be seen in the next example.
For instance, the rule for a Pascal subprogram header
would be:
<Header> ::=

(function ident [<ArgumentLisV] dots <SimpleType I
procedure ident [CArgumentList>l) semicolon .

Calls to semantic actions are inserted in the rule definition.
There is a predefined semantic action, ‘<-I that assigns
values to attributes.

The following example shows how semantics actions are
inserted:
CType ::=

4tandardType> !! type <- StandardType.stType !!
1 array opBr num submg num clBr of <StandardType>
!! type <- BuildArray(StandardType.stType,

num[l].NUMERIC, num[2].NUMERIC);
!!

In this example, semantic actions appear between !!.
Nonterminals appear between < and >. Dot notation is used
to access inherited and synthetized attributes, as well as
terminal lexemes. In the examples ‘type’ and ‘stType’ are
synthetized attributes of the nonterminals (Type> and
<StandardType>, respectively. NUMERIC accesses a
terminal lexeme (a string), but returns it converted to a
cardinal type. In the case that a terminal or a nonterminal is
used more than once in a rule, an index is used to identify
it. For example, ‘num[l]’ and ‘mun[2] access the lexeme of
the first and the second instance of the terminal num in the
rule. BuildArray is a user semantic action that must be
declared prior to its use.

251

Semantic actions are designed and written by the compiler
programmer, but most of them are very repetitive and are
just routine for a compiler course student, who ends up
spending a lot of time writing and debugging the code,
which compels the student to wander away from the
essence of the compiIer. Our approach is to provide a set of
libraries that help the student with routinary tasks, allowing
him or her to concentrate on the main aspects of the
compiler. The set of libraries provided by our system
(designed to be used as semantic actions) are the following
generic ADTs: dynamic strings, lists, general trees and
hash tables. These ADTs are guarded against not
initialization [9], which saves a lot of debugging time. In
addition, there is an output management module, and a
simple error management module. The source code is made
available to students, so they can extend and modify it, if
needed.

Dynamic strings can be of arbitrary size and the most
frequent operations are provided. In fact, the code
generated by AnSin uses this ADT (e.g. in the strings
corresponding to Iexemes).

The ouput module allows output redirection to a file or a
dynamic string, as well as conversion from simple mes to
dynamic strings. The redirection to a dynamic string is
useful when output has to be delayed because the previous
output is not ready. In this case, the output can be
redirected to a dynamic string and written later to the
output file, when possible. It is also well suited for
programming preprocessors.

The error management module generates error fiIes
according to the Borland format, so students can use a
Borland environment to run their compiler and see errors
generated by their compiler in an editor window, marked in
the source code.

5. Conclusions

A compiler-writing system designed for students has been
presented, AnSin-AnLex. It is easy to learn and use. It
generates compilers easy to debug, allowing students to
concentrate on the principles of compilers without being
distracted by peripheral issues. The included set of libraries
facilitates the whole process. AnLex-AnSin has been used
effectively in our compiler course.

The features of our system can be summarized in this list:

l The implementation language is a high-level one,
Modula-2, thus students do not spend time furing errors
produced y the use of low level features.
. The compiler description is independent from the
implementation language. This helps to separate the parser

I

252

description from the implementation of the semantic
actions. This also means that most errors in the description
will be detected by the compiler genarator instead of the
implementation language compiler, which eases compiler
writing and debugging.
l The use of LL grammars prevents the use of difficult to
debug and understand grammars, as is the case with LR
glWllllXS..

l As recursive descent parsers are generated, they can be
more easily debugged with usual debuggers than tabular
ones.
l The set of libraries provided, helps to concentrate in
compiler essentials and not in the building of data
structures (that students already know).

The code of the generated compiler keeps the structure
of the parser description, so it is very easy to relate one to
another. This is very helpful especially when an error is
searched in the code of the generated parser.

Acknowlegments

We want to thank to Sami Khuri and Angel Veltiquez for
their comments and help.

References

1. A. V. Aho, R. Sethi and J. D. Ulhnan, Compilers,
Techniques, and Tools. Addison-Wesley, 1985.
2. E. F. Elsworth, The MSL Compiler Writing Project.
SIGCSE Bulletin 24,2 (June 1992), 41-44.
3. E. F. Elsworth, Modula-2 in a Compiler Writing Course,
Proceedings of the 1st European Modula-2 Conference,
Polytechnic of Wales, Pontypridd, 1990.
4. S. C. Johnson, Yacc - yet another compiler compiler.
Computing Science Technical Report 32, ATT Bell
Laboratories, Murray Hill, 1975.
5. M. E. Lesk. Lex - a lexical analyzer generator.
Computing Science Technical Report 39, A’M’ Bell
Laboratories, Murray Hill, 1975.
6. M. E. Lovato and M. F. Kleyn. Parser Visualizations for
Developing Grammars with Yacc. Proceedings of the 25th
SIGCSE Technical Symposium on Computer Science
Education, 1995, pp. 345-349.
7. H. Mossenbock. Alex - A Simple and Efficient Scanner
Generator. SZGPLANNotices 21, 12 (Dec. 1986), 139-148.
8. R. J. Reid. A Toolkit for Individualized Compiler- Writing
Projects. Proceedings of the 20th SIGCSE Technical
Symposium on Computer Science Education, 1990, pp. 81”
85.
9. J. Savit. Uninitialized Modula-2 Abstract Objects,
Revisited. SIGPLANNotices 22,2 (Feb. 1987), 78-84.
10. A. T. Shreiner and H. G. Friedman, Jr., Introduction to
Compiler Construction with Unljc. Prentice-Hall, 1985.
11. D. A. Watt, Programming Language Processors.
Prentice-Hall, 1993.

