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Abstract
This paper presents an overview of visualization in Computer

Science instruction. It is broken down in the following fashion.
First, we present the motivation for using visualization and visual
techniques in instruction. This is followed by a discussion of when

the use of visualization is most appropriate.

We then consider a broad spectrum of uses of visualization in

Computer Science instruction. This spectrum is organized from

passive to active in terms of a student’s involvement with the
visualization tools. Types of visualizations are then categorized.

The remainder of the paper focuses more on design issues for

instructional visualization tools. These design issues are first

presented from the perspective of the instructor who is
constructing the visualization tool for students and then from the
perspective of the programmer who is creating visualization
software. We close the paper with some suggestions on organizing
and maintaining a Web-based repository of visualization tools for
Computer Science instruction.

1 Motivation
Visualization tools can help Computer Science instructors in a
variety of ways, ranging from merely attracting students’ attention

to constructing in-depth exercises that require substantial student
involvement. In this section we present some motivating factors

for instructional use of visualization tools.

. Clarification of complex concepts through the use of
pictures: the teaching of complex concepts through language alone
often requires a formalism that intimidates students. Although it is
certainly important for our students to eventually acquire a facility

for understanding such formal definitions, we can often aid them
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with appropriate visualizations of the concepts.

Spain

. Alternative presentation modality: research by Tom West

[17, 18] has indicated that some students think best in visual
terms. Such students would be disadvantaged if not presented with
visualizations of material. It is reasonable to maintain that all

students learn certain concepts better by thinking visually about
them, that is, by building mental images of the concepts. The
visualization tools can facilitate the building of such mental

models.

. A hook by which we can grab students’ attention:

increasingly, instructors have discerned the need to interrupt their

students’ level of (inattention in order to focus students’ thinking
on a given problem. Visualization tools, in part by virtue of their

similarity to popular forms of entertainment are often successful at
this grabbing and maintaining of students’ interest.

. Visualization tools allow instructors to cover more material

in less time: a frequent use of visualization tools, when combined

with large-screen projection devices, is to automate the

demonstrations and examples we present in lectures. There has
been little, if any, formal research that would prove that students

learn concepts better when they are presented in this fashion in

lectures. But, let us assume that such concepts are at least learned
as well as they would be when instructors use manual techniques.

This seems a reasonable assumption since the automatic

production and display of such demonstrations at least removes
the errors that inevitably occur when instructors manually draw
structures as B-trees on the board. Under this assumption, Eric
Roberts provides an interesting rationale for using visualization
tools in [1]. His argument is that students learn concepts as least

as well as they did without the tools and that using the tools
enables us to cover material faster in our lectures. Therefore, we
cover more material with at least the same level of understanding
as before, so there is a net gain.

. Good visualizations can increase students’ understanding:

anecdotal evidence indicates that good interactive visualizations

can increase students’ understanding. In particular, an interactive
visualization allows students to receive feedback on correctness,
to step slowly through an algorithm at their own pace, to view
changes pictorially in an algorithm, and to view the outcomes
when different data sets are input to an algorithm.
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. Visualization encourages modes of learning we want to see

in students: ‘Because students resist theory, preferring practical,

hands-on computer problem-solving’, [8] the use of highly

interactive simulation software packages that support

visualization. stimulates and clarifies most of the concepts for

them. Such packages can help students better comprehend the
theoretical concepts underlying applications. Given a problem

instance, students can experiment with different inputs and

investigate various aspects of problems, concepts and algorithms
at their own pace.

● Handling students with different backgrounds: educators are

often faced with the challenging task of motivating the less well-
prepared students while challenging the more advanced ones. One
way of motivating all students is to include optional problems in

assignments so as to challenge the more advanced students.

Visualization tools that include theoretical explanations and
challenging problems can sustain student interest and allow self-

paced student exploration.

● Visual debugging: debugging is not a pleasant endeavor.

Visual debugging can simplify the debugging process and remove

some of the frustrations, thus rendering the whole process more
tractable. For example, one can simultaneously see the individual
lines of code executing, monitor the state of variables, and

visually ascertain whether or not a linked list is connected.

. Visualization allows us to capture effective manual

classroom techniques: the illustration of many procedures,
especially those which involve two or higher dimensional

structures, profit from visual animations. It is time-consuming and

difficult to draw such structures on the board manually. The

automation of visual images saves time, and it also reduces errors
and increases the clarity of classroom presentations.

● Broadening visualization to perceptualization: it is important

to realize that visualization is by no means limited to ‘visual
images’. The latter can be enhanced by including other perceptual

components, such as audio.

2 When to use visualization
Some form of visualization, either the simplest form of a picture

or the more complex form of an animation, should be used in the
teaching of Computer Science concepts and algorithms. Only for
very simple examples is effort wasted on creating a visualization.
If computer tools are used to generate the visualization, these tools
should be of the highest quality and must have a high degree of
interactivity.

The choice of the type of visualization used, a picture or an

animation, depends on the topic and the cost effectiveness. A

visualization in the form of a picture is used when the amount of

data is small, the data structure is very simple, or when the

relationship of objects is important, but movement is not needed.

When a small amount of data is shown, the steps of an algorithm

can be traced with snapshots and it may not be worth the time and
investment of generating an animation. For example, the
illustration of i nsertion sort with 4 elements is enough to illustrate
the main idea in the algorithm, and can be shown on a one page
trace. When the data structure is very simple, a picture of the data

structure is much clearer than a textual description of it. For
example, a picture of a linked list is much clearer to understand

than a textual description of each element, its position in the list,
and a description of how elements are connected together.

Furthermore, the description of an insertion into a linked list can

be easily illustrated with two pictures, the initial list and the final
list with old links crossed out. If there is no movement, then a

picture can be used to illustrate the relationships between objects.

For example, in a mathematical proof, a pictorial model of the

steps in the proof can be helpful in remembering the proof.

A visualization in the form of an animation generated on the

computer is used when the quantity of data is large, the data
structure is complex, or when movement is needed to show blow
the relationships between objects change over time. When a large

quantity of data is used, an animation can show how this data is

processed. For example, the illustration of shellsort must use a
large amount of data in order to show several partition

breakdowns. As another example, illustrating the binary search

algorithm and its analysis is more effective using a large amount

of data to show how fast one can find a particular element. When
a data structure is complex and/or changes of the data structure are

to be discussed, an animation can show these curnplexities and

movement much more easily than one could show them 011 a
blackboard. For example, to illustrate the insertion of a new
element into a red-black tree, one must show the colors of all the

nodes, the recoloring of specific nodes and then possibly one or
two rotations, which could involve large subtrees moving. Not

only is this difficult to animate on a blackboard with erasures and

redrawings, but students have difficulty in trying to take notes on

a picture that is changing.

The type of picture or animation created, either hand drawn or
computer generated, depends on the cost benefit of developing the

picture. Non-technical animations can be just as effective, may
involve less time in their creation, and can involve the class with

more interaction. We give three examples. First, a phone book (can

be used to illustrate the quickness of binary search in looking up
the phone number for a specific person. Second, students sitting at

a table can be used to illustrate the dining philospher’s problem.
Finally, a linked list can be bought at a toy store: large snap color

beads that are composed of ‘nodes’, conveniently containing a
hole on one end and a snub or ‘pointer’ on the other end for

snapping them together. The illustration of building a linked list

can be done with student participation. One student can be the
‘heap’ and hold all the nodes. Whenever a new node is created,

the heap is called and throws the builder a new node. This

emphasizes that memory must be obtained dynamically when
creating a linked list.

3 Using visualization in teaching
Visualization tools can be used in a variety of teaching situations:

classroom demonstrations, open or closed laboratories, and
traditional assignments. The student can be a passive viewer of
information or an active participant in the visualization process,

and involved in instructor-led, individual, or collaborative worlk.

In the classroom, visualizations are often employed in the

demonstration of a topic. Given the power of a visualization to

illustrate abstractions, visualization tools may be appropriately
used before, after and during the discussion of a, topic -- before,
because of the ability of visualizations to abstract from
implementation details, and after, to reinforce lecture material
such as algorithm details. It is thus important that a visualization
tool allows access to the topic under investigation from different
viewpoints and at multiple levels of abstraction.
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Active engagement is an important goal, not only in the

laboratory, but in the classroom as well. Visualization tools need
not be used merely as ‘view only’ tools in the classroom, For
instance, if thetopic is balancing criteria for binary trees, and the

tool is one in which values can be merely added or deleted, an

instructor could begin bydemonstrating the addition and deletion

of values andresulting balancing actions. But as the presentation

proceeds, students can be engagedin amoreactive fashion by

questions such as ‘What would be the effect of adding this value?’

or ‘Name a value whose addition will lead to a double rotation.’

Later, collaborative work could be assigned to solve such
problems as ‘Generate a minimal binary search tree which is red-

black but not AVL.’

Evidence indicates that active engagement on the part of students
leads to higher motivation and better integration and retention of
content. Some visualization tools lend themselves to active
student engagement more readily than others. In table 1 we have

classified visualization tools along a continuum from maximally

passive to maximally active student involvement. At one end of

the scale, static pictures and canned demonstrations are ‘view
only’ and require the instructor’s intervention to actively engage

the student. At the other end, student created or modified
visualizations require active involvement. Examples of

appropriate classroom and laboratory use for each tool are
indicated in the rightmost column.

4 Types of visualization tools
Visualization tools can be characterized in several ways. this

characterization is based on the taxonomy by R. Roman & K. Cox
[13]. The criteria used from it are:

. Scope: what aspects of the program are visualized?
Visualization tools can show code, events, and/or data.

. Abstraction level.: this is the level of the concepts displayed.

It can be a direct representation where there is a picture associated
with some aspect of the program. In that way the original
information can be reconstructed from the picture. Structural
representation is more abstract than direct representation. Aspects
not important to the viewer are supressed, while those of interest
are directly represented. Synthesized representation is the most

abstract level of visualization; here the information visualized is
derived from program data.

● Specification method: this is the mechanism used by the

animator to construct the animation. Some systems have a fixed
mapping from the program to the visualization while others allow

the definition of this mapping by annotating the program with
procedures that draw and modify images.

● User Interaction: the viewer of the visualization can have low
interaction with the visualization (passive) or frequently interact
by selecting data, defining the speed of the visusalization, and so

forth.

These four points can be summarized as what information is

visualized (scope and abstraction level), and how the visualization
is generated (specification method), the latter also determining the
potential users of the tools. If there are predefine visualizations,

the tool is easy to use and the useris required to do nothing to
visualize a program. These kinds of tools are adequate for students
new to visualization. On the other hand, if the specification

method of the tool is annotation. the tool will be more difficult to

use and thus not adequate for beginners. The specification method

also influences what type of use the tool can have. Predefine
visualizations are specific tools, they can only show the
predefine aspects, while annotation makes tools more flexible

thus allowing the user to customize the visualization.

Degree of student

engagement

Most Passive

Most Active

Visualization types
and tools

Static pictures

Canned (dynamic)
Demos

Demos with display

adjustments

Simulations

Animations with
interactive data inptrl

Games(inclued

interactive decision

points)

Learning

environrnents(highly
interactive systems
that support
exploration:
notations, interactive
value adjustments, ...

Student modifiable

visualizations

Student generatable

visualizations

Visual output for

programs

Table 1

Examples of
instructional use

Lectures; ; Textbook

& Workbook figures

Lecture
supplements;

Introduction to
visual systems (ex.

PAIL 1) Preparation

for lab

exercisesExercises

Lecture

supplements; Closed
lab exercises; Open

lab review

Lecture

supplements; Closed
lab exercises; Open

lab review

Lecture

supplements; Closed
lab exercises; Open
lab review

Lab (open or closed)

exercises

Lab exercises:

exploration and
experimentation
primarily in open
labs (e,t. PAIL.
FLAIR z,

Smithtown q

Open lab exercises;

Term projects;

Programming

assignments

1 PAIL= Portable AI Laboratory [11
2 FLAIR= Flexible Learning with an AI Repository [9]
3 Smithtown, is used to teach macroeconomics to middle school
students [14]

Tools can also be clasified from the point of view of their
flexibility, that is, how they can be used. Specific tools ~isualize
an algorithm or a set of them in a predefine way. Visual

debuggers can depict any algorithm in a predefine way. On the

other hand, visualization generators are the most flexible since
they can visualize any algorithm in many different ways.

Existing visualization tools can be clasified into three categories:
program visualization, algorithm animation, and data visualization

194



tools. Each of them has a scope, a level of abstraction and a

specification method.

Program visualization (Visual debuggers)

This type of visualization focuses on the graphical representation

of an executing program and its data.

. Scope: data, code and events of interest are visualized.

● Abstraction: direct representation of the code and data (low
level of abstraction).

. Specification method: data and code have a predefine

visualization. Each aspect of the program to be visualized is

predefine.

. User interaction: the role of the user can be from passive to

active user. Typical interactions are breakpoints, changes of input

data, and so forth. The interactions are predefine.

Algorithm animation

This type of visualization shows operations fundamental to an

algoithm, as opposed to just code and data.

. Scope: these are general purpose tools, the user decides what

to visualize.

● Abstraction: since the user of the tool decides what to

visualize and how, the level of abstraction to be shown can be

chosen. Most of these tools have a structural or synthesized
representation.

● Specification method: user defines the relationship between
the algorithm and the objects displayed by means of annotations.

That is, the user chooses the images for the aspects of the program

to be visualized and when to visualize them.

● User interaction: this is also defined by the programmer, so
these tools range from passive user to a high level of interaction.

Data visualization

This kind of visualization shows operations inherent to an abstract
data type, as opposed to program code.

● Scope: only data or other things that can be represented as
data. For instance a tree of recursive calls or a stack of pending
calls. are visualized.

● Abstraction: these tools have a high level of abstraction,

structural or synthesized representation, tending to group or

organize data in some way, and do not just showing a collection of
values.

● Specification method: the program is annotated in order to
produce a data trace.

. User interaction: the user of these tools is a passive user
having a low level of interaction.

5 What makes a visualization effective?
An effective visualization combines the skills of a human designer
with the capabilities of the software and hardware on which the
system wi 11run. In this section we present a set of principles to

keep in mind when designing a visualization tool. These principles

bridge the gap from our earlier discussion of using instructional
visualizations to the ensuing discussion of software design

patterns underlying a visualization tool.

. Instruction is paramount: remember that the primary goal in

constructing a pedagogical visualization is to instruct, not to

entertain. Although we may want to use graphic ‘tricks’ to grab

students’ attention, we only keep their attention if the graphics
truly lead to better understanding of the material. According to
Miller in [1 1], “It is much easier to draw a visually attractive
picture than it is to draw a useful one. You know you have goofed
when you hear: ‘that really looks neat, what does it mean?’ “

● Provide the user with a standard GUI to manipulate within
the visualization tool: anecdotal evidence suggests that one reason

instructors and students avoid using visualization tools is the
learning curve associated with becoming adept at using them. This

learning curve can be greatly reduced by presenting the

visualization in the context of a GUI with which the student is
already comfortable, for example, the standard Windows or
Macintosh ‘look-and-feel’. Providing online help is also essentiid.

. Provide the user with different views of the data, program, or
algorithm: the structures underlying most sciences are embedded

in a physical model. This is not the case with Computer Science in

which the underlying structures are purely conceptual. This oflen

results in an inherent complexity that can only be realized through

a visualization that can assume a variety of forms. For instance,~n
depicting the actions of the quicksort algorithm, one could begin

by viewing the actual values of the items in the army being sorted.
However, this view requires the user to spend considerable time
mentally arranging the data items according to relative magnitude.
More intuitive views of the data values are the so-called ‘sticks’

view and the ‘dots’ view. In the former, the magnitude of each

item is reflected by the length of a bar, with a visual effect similar

to that of a histogram. In the latter each value is plotted as a dot on

a set of axes. The vertical axis represents the relative magnitude of
the number while moving to the right along the horizontal axis

represents moving into higher array indices. The net visual effect

is that of a scattergram. However, quicksort is also a model “for

recursion. In this context, the user may want to view the stack of
activation records ssociated with each recursive call or the tree of
recursive calls. Hence we have described five separate views of
the quicksort algorithm -- the actual data values in the array

structure, the sticks view, the dots view, the run-time stack, and
the recursive call tree. An effective visualization of quicksort
should allow the user to see each of these views simultaneously

each time an interesting event is encountered in the algorithm’s

execution.

. Provide the user with simultaneously identical views of
different algorithms manipulating the same data: this principle is
the ‘dual’ to the preceding one. When comparing different

algorithms, it is imperative that the student be able to watch how
each would operate using the same data set. Such a comparison
should be carried out by presenting the same view of the two
algorithms in different windows. For instance, when comparing
the heap and quicksort algorithms, we may wish to present a
‘sticks’ view of each algorithm. By watching the simultaneous
animations of the two algorithms, the student willl become aware

not only of how each algorithm compares and exchanges items in

the array but also of differences in efficiencies of the two
algorithms.
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. Strive to draw the user’s attention to the critical area of the
visualization: there will typically be an area of central activity in

an algorithm. For example, in studying graph search algorithms,

this area will be the current node under consideration and those

nodes directly adjacent to it. tbe visualization should focus the

user’s attention on these nodes. Perhaps the easiest way to do this
is to highlight these nodes with different colors. Color used in this

fashion is truly informative rather than merely entertaining for the

user. Another less obvious technique to focus attention on the area
of central activity is the use of a ‘fisheye’ view. In such a view the
central area will appear magnified when compared to other areas

of the visualization. One should also consider the use of audio to
focus the attention of the user. When combined with audio, the
visualization becomes a true perceptualization of the principle
being studied.

. Use a text window to make sure the user understands the

visualization: in [16], Stasko, Badre, and Lewis point out that one
reason algorithm animations are often ineffective is that the

instructor (that is, the creator of the visualization) ‘already

understands the algorithm. Students just learning about an

algorithm do not have a foundation of understanding upon which

to construct a mapping from the algorithm to its visualization.’ To
construct this mapping, the instructor must explain it in words --
hence the need for an appropriately sized text window. Although

this window may contain portions of the code being visualized, it

is not a code window in the sense of a graphical debugger. The

window should de-emphasize code and emphasize clearly written
instructional material. Ideally this window should be visible

throughout the visualization so that the user may requently refer to
it without having to switch contexts. Proponents of visualization

often claim that ‘one picture is worth 1,000 words.’ We feel that,
by combining visualization with carefully written prose, we can
achieve an even greater gain -- one picture plus 100 words is

worth 1,000,000 words.

● A high degree of interactive user control is necessary: users

will often get lost even when viewing the best of animations and
visualizations. Once lost, they must be able to control the
visualization to get back on track. Without tbe ability to exercise

such control, they will merely become passive viewers of what
has become a sequence of meaningless pictures. Pan and zoom

capabilities are critical in this regard. Pause, speed-up, and slow-

down controls are essential for viewing animations. An even more
important facility that is not presently found in most animation
systems is the ability to go back in time. Such a facility might take
the form of a rewind control which would allow the user to back

up the animation to a previous point in time and then view again a
particularly complex portion of the animation. Another alternative

that allows the user to answer the question ‘How did I reach this
point?’ is to use three-dimensional graphics in which the third
dimension represents time. Thus, one sees previous views drifting
back in space. The effective use of three-dimensional graphics in

algorithm animation systems has been explored by Brown in [4]
but requires much further study.

● Substantial screen real estate will be needed for the most
effective visualizations: the ability to present different views of

the same algorithm, simultaneous identical views of different
algorithms, and textual material explaining the visualization will
require a large display area, This means that the best
visualizations will often require high-end display devices.

Designers of visualizations will be faced with the tradeoff of

variety of equipment (for example, over the World Wide Web) at

the expense of sacrificing visual information that has more
substantial display requirements.

6 Design of visualization software systems

6.1 Introduction
Reference models are useful in identifying the logical operations

and interactions in complex systems, and give a basis for

discussion. From the basic understanding given by the model, one
can devise appropriate implementation models for different

computing environments.

The aim of this section is to describe two paradigms, model-view-
controller and dataflow, and to show how visualization may be
explained in terms of these paradigms. A motivation for this work
is to identify strategies that promote system independence and

sharing of software among educators; thus we also look at

enabling technologies whose use with these architectural models
promotes re-usability. Finally we present an existing algorithm

visualization system in terms of our models.

6.2 Model-view-controller (MVC) paradigm
The model-view-controller framework emerged relatively early in
Smalltalk experience as a paradigm for the creation of interactive

applications. It does not depend on Smalltalk or fundamentally on

object oriented programming, though it is well supported by
object oriented languages. When using MVC, the application is
partitioned into three different kinds of classes. Model classes

implement the underlying concepts with which the program is

concerned. View classes implement what is seen by the user.
Controller classes implement the mechanisms with which the user
interacts with the program. Typically an application will have a

single model and one or more views with one or more controllers,

Model

qx!p

View

w
Figure 1 Model View Controller

There is relatively little coupling among the components of the
MVC application. In particular, the model has no knowledge of its

controllers and very little about its views, except for their
existence and support of a standard interface. The decoupling
between elements makes it easy to add additional views and
controllers to an application, perhaps radically changing its ‘look
and feel’.

designing a visualization that can be viewed by many on a wide
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An example of a data-oriented model might be as simple as a

queue of pending messages, implemented as a linked list. One

view of the queue might be array like, showing the messages in

the order in which they occur in the queue.

Another might include cells and links, showing the mplementation
details. One controller might be textual, providing a text box into
which the user might type commands (insert, remove, ...). Another

controller might involve direct manipulation with the mouse,
dragging messages into or out of the queue. The textual controller
will accept commands from the user and after parsing them and

verifying their validity, will pass one or more messages to the

model to effect the desired changes. The model will then send

‘update’ messages to its views so that the displays may be

changed to reflect the changes in the model. Upon receiving the

update message, the view may query the model for the details of

the change. The direct manipulation controller, however, will
work directly on one of the views. When the user drags the front
element of the queue to another part of the screen, that view may

be immediately changed to reflect the user’s desires. The view will
then send a delete message to the model so that the model is

consistent with this view. The model, having been changed, will
then alert its views so that all maybe made consistent.

The model-view-controller may be used effectively to implement

visualizations. The views represent the visualizations themselves

and are the relatively passive part of the user interface. The

controllers, on the other hand, represent the more active portions,
by which the user manipulates and controls the visualization.

6.3 Dataflow paradigm
6.3.1 Introduction

The dataflow paradigm models a computational task as a network

of subprocesses, or modules. Data passes through the network,
from a source towards a sink; data output from one module acts as

input to another. This paradigm is well suited to visual

programming where modules can be interactively fitted into a
network, in a ‘plug and play’ fashion. This is illustrated in Figure
-

Figure 2 Data Flow Model

Sink

-1

6.3.2 Scientific visualization

Haber and McNabb [7] have shown that a scientific visualization
may be expressed as a pipeline of processes, as in figure 3, in
which the raw data is first input, then passed through a filter

process (to select the portion of data of interest), then a map

process (to express the data in a geometrical form - that is, lines,

areas,...) and finally a render process (to view the geometry from a

camera angle, applying lighting and shading). The end result is an
image, or a sequence of images forming an animation.

I Input Generator 1

Input Data

I f

I Algorithm
I

Algorithm Trace

Filter

I
__l

● Filtered Algorithm Trace

Mapper

I

Animation Primitives

I Animator

I

Image

I I
Display

Figure 3 Process Pipeline

A visualization toolkit such as IRIS Explorer [5] will typically
provide a set of different filter modules, and a set clf different map

modules, so that the user can ‘plug and play’ to create a range of

different visualizations. Each module will be controlled by a set of

parameters: for example, a map module to extract contour lines
from a two-dimensional data set would have a list of contour
levels as a parameter.

A key part of the toolkit is the data model: there needs to be
standard data types for images, geometry and scientific data. The

latter will be two- or three-dimensional arrays of values,

positioned on a regular grid, or at scattered locations. By u.smg

standard datatypes, new modules can be progressively added to
the system; indeed it is possible to allow a user to add new
modules, and these will automatically interface if they use the

standard data types.

The above model also acts as a basis for distributing the
processing work. in most systems, each module in the pipeline can

be distributed on a separate processor: the input., filter and map
processes for example could be sited on a large central server, and

the render process on a workstation. Indeed this is a suitable

model for a web version: the geometry may be created on the vveb
server, and converted to VRML or Java bytecodes so that it may

be passed to the browser for viewing. VRML is a three-

dimensional scene description language gaining rapid acceptance
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as a Web standard - it provides machine and operating system
independence (see section 6.4).

Scientific visualization is used both for the visualization of
measurement data (e.g. medical scanners) and simulation data

(e.g. computational fluid dynamics). In the latter case, the input

module can be significant - that is, the simulation code itself - and

the ability to run modules on different hosts becomes important.

Alternatively, the simulation may be run off-line and the data

stored; the visualization is then run as a post-processing exercise,

as in figure 4.

ee
On Line Mode

Data Store

Post Processing

Mode

Figure 4 Online vs. Offline Visualization

A key difference is that on-line visualization allows steering of the

simulation - that is, the user can control the simulation as it

proceeds, making judgments based on the visualization. This is
usually not possible in post-processing mode.

6.3.3 Algorithm visualization

The same ideas can be used to derive an architectural reference
model for algorithm visualization, where the processes of an
algorithm are illustrated. A proposed reference model both for

algorithm visualization and for scientific visualization is shown in
Figure 3. The source in this figure is data that is input to the

algorithm - we term this the input generator process. This passes
to the algorithm itself, which outputs an algorithm trace. There are

at least two kind of traces:

Event traces report about what has happened in the algorithm. It
can be a data change or the occurrence of an operation (e.g. an
exchange in a sorting algorithm or a rotation in a AVL tree).

Data traces inform about the new state of the data, either tracing
the whole state of the structure each time, or just the changes of
the data, which can be called an incremental trace.

Event traces are algorithm specific, so it is difficult if not
impossible to predefine them. On the other hand, data traces are
easier to standardize as they are only dependent on the type of the
data structure, many of which are well-known.

Some examples are:

Binary Search.
* Set array size (size).
* Set value of a component (index, value).
* Set value of the component to search (value).
* Set lower or upper bound (index).
* Set middle index (index).

Sorting.
* Set array size (size)
* Set value of a component (index, value)
* Exchange components (index, index).

Two kinds of data oriented traces can be distinguished:

incremental traces and non-incremental traces. In a non-

incremental trace it is necessary to specify the variable name, the
data structure type, and the value of the data structure. A good
method for expressing structured values is to use functional

constructors. For instance a binary tree whose content is a node
with x as root and y as right child could be expressed as:

node(empty, x, node(empty, y, empty))

In an incremental trace it would be also necessary to specify

modify operations such as:

* Insert/remove element in a linked list

* Rotate children of node at a specified position of a tree

The algorithm trace feeds to a filter process which selects a subset
of the trace, or modifies the trace, before passing it on to a mapper

process. The mapper process assigns an abstract geometric

representation to the elements of the algorithm trace. This
representation includes both static and dynamic geometric

primitives. For example, a dynamic primitive could be to move an

object to a new position. We term these animation primitives. It is
the map process which is critical to the design of an effective
visualization - the abstract representation defines the visual
metaphor which is used to communicate the ideas of the

algorithm.

These animation primitives flow to an animator process which
outputs static drawing primitives; these pass to a render process
which generates an image. Similarly, Figure 3 extends to

algorithm visualization. In this case, the output from the algorithm
will consist of the algorithm trace. As before, this can be created

off-line and played back later (post-processing), or can be fed
directly to the visualization for on-line viewing.

6.3.4 Utility of the data$ow paradigm

As with scientific visualization, the model acts as a basis for
understanding the logical processes involved in algorithm
visualization. It can also be useful as an implementation model,

and the arguments about distributing processes between client and
server, and incorporation in the Web, all carry over immediately.

In particular, the model offers a logical separation between the

algorithm and the visualization generator. The separation is
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defined by the algorithm trace. This gives a common interface that

could even be standardized as an Internet MIME type (the

Chemistry community has already done this - there are MIME
types to transfer molecular data files across the Internet for
example). This protocol would support either on-line, or post-
processing styles of working.

A separation between map and animator could be realized as
VRML 2.0. This would give access to the emerging VRML web

browsers. A separation between animator and renderer could be

realized as VRML 1.0.

It is important to note that this model is only intended as a

reference model. Any particular implementation could choose to

ignore the separation between processes if it wished - but logically

the processes take place however the implementation is

performed.

Another advantage of the logical separation is that it identifies
places where intermediate data may be stored. This allows

playback of parts of the visualization if required, without the need

to re-run the algorithm.

Finally the model helps us to understand how to convert existing

applications. For example, the animator description language of

Xtango [15] is at tbe same logical level as the animation

primitives in the model. By creating a tool that translates Xtango

animation primitives to VRML 2.0, then Xtango applications

could be used over the WWW.

6.3.5 Examples

Consider the following parallel sorting algorithm, in which
numbers are initially placed in a sequence of cells. Suppose there

are an even number of cells. At each clockstep, there is a

comparison between adjacent cells and data is swapped if

necessary.

At alternate clocksteps, the comparisons are between cells:
A : (1, 2), (3, 4), ... (n-3, n-2), (n-1, n)

B : (2, 3), (4, 5), ... (n-2, n-1)

Sorting is guaranteed in n steps,

At the beginning the animator would receive requests to create the
circles (associating identifiers with them) and to create text
objects inside the circIes with the initial values (also with
associated identifiers). During the execution of the algorithm the

mapper would issue movement commands to the animation
process to interchange pairs of text objects.

The algorithm can pass the following to the visualization

generator:

- unsorted list of numbers

- at each step, a list of operations of the form:

exchange elements (i, j) of list

This could be visualized by a map process which did the
following:

- represented the list as a sequence of circles with numbers inside

each;

- represented each exchange operation as an animation of the
exchange of numbers between circles.

Parameters to the map process could be the size and color of the

circles and the speed of the animation.

The render process would take the geometric output of the map
process and generate an image.

Next we provide an example of a visualization too~ that fits into

the reference model.

BALSA [2, 3] is an animation tool in which algorithms are

annotated in order to produce a trace of the events of interest. In
BALSA, the mapper process is termed the modeler and the

filtering process is termed the adapter, Finally, the animator and

renderer are collapsed into what BALSA calls the render process,,

6.4 Enabling technologies
Java provides good tools for implementing visualizations and
visualization generators. In particular, the Abstract Windowing

Toolkit (AWT), the thread interface, and the network interface can
be used to advantage. More important, however, is the machine
and operating system independent graphics model that is

provided, as well as the easy world wide distribution channel that

is assumed.

Existing Java libraries are sufficient to imp~ement MVC

applications, Standalone, ‘one off,’ visualizations are easy to build
with the AWT as either applications or applets. However, the

ability to build visualization generators would be greatly enhanced

by various, not yet extant, extensions of the Java libraries. l[n
particular, a library of ‘Computer Science data structures’ such ;as
trees and graphs would be useful here.

Likewise, VRML (especially the expected VRML 2.0) provides

an enabling technology for machine/operating system ndependent

graphics. Generating VRML code, perhaps through an

intermediate stage of an internet MIME type is an excellent means

of making visualizations widely available. VRML 2.0, with its

ability to attach Java code to a visualization description, permits

the additional dimension of animation.

7 Repositories
In spite of the wealth of development environments, the creation
of visualization tools remains a difficult and time-consuming task.
This is partly evidenced by the small number of available

visualization tools, Given both the difficulty of visualization tool

creation and their usefulness in teaching, an effective means of
sharing these tools is called for.

With current technology, an effective means for sharing

visualization tools would be a web based repository. This form of

sharing has a number of benefits:

● Provides a single ‘location’ for both tool users and potential

developers to investigate the set of already existing tools.

. Provides tried and tested visualization tools for anyone to
use.

. Facilitates new development to build upon previous work;

both in the elimination of duplication and in addressing (he
shortcomings of previous work. This is essentil ally important
given the high ‘cost’ of tool creation.
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● Encourages new development. Potential developers might
have greater enthusiasm to undertake new development given

assurances it will be both original and widely used.

Repositories, such as the one proposed, come in two types; peer

review (for example, NetLib) and editor (or site maintainer)

review (for example, Sunsite). There are pros and cons associated

with each type. With a peer review repository there is a high

degree of quality assurance since only those visualization tools
favorably reviewed by a set of ‘qualified’ reviewers are present,

Unfortunately, this quality assurance requires a long lead time
between the time of tool ‘submission’ to the repository and when
it is made widely available (the turnaround time). Also the fear of

rejection may both encourage developers to create high quality
software as well as inhibit potential developers from undertaking a
new project.

An editor reviewed repository typically has a lower degree of

quality assurance than one which is peer reviewed. Alternatively

the turnaround time is much shorter under an editor review

scenario. Finally, without any fear of rejection, a larger number of
individuals may decide to undertake visualization tool

development.

Regardless of which style of repository is implemented, the

repository should contain the necessary data to simplify
investigation. Repository entries (which are categorized by topic,

platform, etc.) are each accompanied by a description of what the

visualization tool does and how it is envisioned to be used. This
descriptive data, which should be provided in a uniform and

searchable format, will either be provided by the tool’s author or

the repository editor (or both).

There are a number of existing initiatives which could be

expanded to provide the proposed repository.

. Scott Grissom at http://www.uis. edu/-grissom/VISUALS
has begun an editor review repository for visualization tools.
Unfortunately this repository, besides being very incomplete, does
not provide the searchable tool descriptions described above.

● The ACM group SIGCSE has proposed a peer review

repository to contain C.S. labs. This effort is being directed by

Deborah Knox. [10]

. In [6] Michael Goldweber has proposed a peer review
repository to contain large courseware systems. (that is, 0.S.
simulators, D.B. environments, etc.)

We observe that regardless of whether one of the above initiatives
is expanded to incorporate the proposed visualization repository,
or a new initiative is begun, the success is heavily dependent upon
the acceptance of the repository by the C.S. education community.

Acceptance is typically based upon the quality of the material in

the repository and how widely the repository is known. We
strongly recommend the continued development of such a
repository.
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