
ADAPT
IST-2001-37126

Middleware Technologies for Adaptive and
Composable Distributed Components

Prototype of the Transactional Engine

Deliverable Identifier: D4
Delivery Date: 02/29/2004
Classification: Public Circulation
Authors: F. Pérez Sorrosal, M. Patiño Martı́nez, R. Jiménez Peris
Document version: 1.0, 02/27/2004

Contract Start Date: 1 September 2002
Duration: 36 months
Project Coordinator: Universidad Politécnica de Madrid (Spain)
Partners: Università di Bologna (Italy), ETH Zürich (Switzerland),

McGill University (Canada), Università di Trieste (Italy),
University of Newcastle (UK), Arjuna Technologies Ltd.(UK)

Project funded by the
European Commission under the
Information Society Technologies
Programme of the 5th Framework

(1998-2002)

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Contents

1 Introduction 3

2 The J2EE Activity Service Specification 3

3 J2EE Activity Service Architecture 4

4 A High Level Service for the Open Nested Transaction Model 4
4.1 The ONT Model . 5
4.2 Using the ONT Model . 6

5 ONT HLS Implementation 10
5.1 Deploying the Activity Service and an HLS . 10

6 Integration with Web Services 10
6.1 A Conversational Web Service . 11

A Software Distribution 13

Prototype of the Transactional Engine 1.0 2

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

1 Introduction

In this document we describe the advanced transactional support provided in the context of the ADAPT
project for basic services (BSs). The transactional support is provided by a transactional engine that
supports advanced transaction models. These transaction models arise due to the increasing complexity
of applications that need more complex transactional semantics than those provided by the classical
short-lived ACID transactions. The composition and coordination of web services with transactional
semantics is an example of those applications.

There are many advanced transaction models in the literature; however, no single transaction model
satisfies all types of applications. A discussion on this topic can be found in deliverable D5: Trans-
actional Support [JP03]. The OMG Activity Service (AS) [OMG02] defines a generic framework for
implementing advanced transaction models in CORBA. The J2EE Activity Service specification [Sun03]
is the adaptation of the CORBA Activity Service to the J2EE environment.

The prototype of the transactional engine implemented in this deliverable is an implementation of
the J2EE Activity Service specification (ASS) draft 0.1, June 2003. As part of this deliverable the open
nested transaction model (ONT) has also been implemented as a proof of concept along with a simple
application based on this model. The rest of the document describes the J2EE AS specification, the ONT
model and the example that uses ONTs.

2 The J2EE Activity Service Specification

The Activity Service provides an abstract unit of work, activity, that may or may be not transactional. An
activity may encapsulate a JTA transaction [Sun99a] or be encapsulated by a JTA transaction. Activities
may be nested. Figure 1 (borrowed from [HLR+03]) shows a complex structure of activities. The dotted
ellipses represent activity boundaries, whereas the solid ellipses are transaction boundaries. Activity
A1 contains two nested transactions, while activities A2, A4 and A5 contain no transaction. Activity
A3 is more involved; it contains a transaction, which again contains one activity (A3’) that contains a
transaction. Activities A1 and A2 are sequential, while A3 and A4 are executed in parallel.

Activities are explicitly demarcated. They are created, executed and completed, producing an out-
come. Demarcation points are communicated to registered entities (actions) through signals, which are
produced by signalsets. The signalset is a finite state machine that accepts the outcomes of actions as
input. The signalset may use that outcome to determine the next signal to send. The next signal will
not be produced until the previous one has been sent to all registered actions. Based on this model, the
J2EE ASS defines the interfaces and behaviour of an Activity Service such that using those interfaces,
advanced transaction models can be implemented. A transaction model defines the signals that may be
produced during the lifetime of an activity, the outcomes and the state transitions (signalset) produced as
signals are consumed.

For instance, the two phase commit protocol may be implemented using the AS [HLR+03]. The
signals for this protocol would be prepare, commit and abort. The actions registered with the signalset
are the protocol participants. Once the transaction (activity) finishes, the signalset produces the prepare
signal. This signal is communicated to all participants (actions) one by one. Each action may produce
a different outcome (the vote), which will determine the next signal to be produced. Assuming that all
participants vote yes, the next signal (commit) will be sent to all actions.

Prototype of the Transactional Engine 1.0 3

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Figure 1: Activities and transactions

3 J2EE Activity Service Architecture

There are two main components in the AS architecture: High Level Services (HLS) and the Activity
Service (AS) itself (Figure 2 from [Sun03]).

A High Level Service defines a specific transaction model. Applications use a HLS to demarcate their
activities; they do not interact with the AS. A HLS interacts with the AS, which distributes the
signals of the HLS. The ASS does not define implementations of HLS. It just defines the interfaces
a HLS must implement and the interfaces a HLS may invoke on the underlying AS.

The Activity Service is a low-level general purpose engine for registering and triggering events with
the notion of activity scopes (contexts). The AS provides two interfaces, UserActivity and
ActivityManager. The ActivityManager interface is used by containers. Methods of the
UserActivity interface are used by a HLS to control and demarcate the scope of an activity.
These methods also allow pluggable coordination. The AS manages HLS’s contexts, including
JTS contexts [Sun99b] and implicitly propagates them with remote requests.

The separation of these two elements allows the plugging of different transaction models into an AS
implementation. New transaction models are added just by providing the corresponding HLS. The AS
does not require any changes, since it does not contain details about any transaction model.

The interaction between a HLS and the AS is shown in Figure 3 [Sun03]. A HLS provides a
ServiceManager to the AS through a UserActivity instance. The ServiceManager is used
by the AS to obtain the HLS signalset. The ActivityCoordinator uses the signalset to produce
signals and send them to actions. It also returns the outcomes of the actions to the signalset.

4 A High Level Service for the Open Nested Transaction Model

This Section describes the open nested transaction model (ONT) and an HLS that implements this model.
The ONT HLS implements the required interfaces (ServiceManager, SignalSet, Action)
to communicate with the underlying AS implementation and offers to applications a simple interface
(UserOpenNested) in order to use ONTs. These interfaces are defined in [Sun].

Prototype of the Transactional Engine 1.0 4

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Figure 2: J2EE Activity Service architecture

Figure 3: Interaction between the AS and a HLS

4.1 The ONT Model

In the ONT model each activity represents an atomic unit of work, a JTA transaction. Any activity
creation implies the creation of an associated top-level transaction. Activities may contain any number
of nested activities, which may again contain other nested activities organized into a hierarchical tree.
During the execution of a nested activity, the parent transaction is suspended. The parent transaction will
resume, when the nested activity finishes.

The ONT model was originally defined in [WS92]. We will follow a variation of the ONT defined in
[Sun03]:

Prototype of the Transactional Engine 1.0 5

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

1. An ONT activity cannot succeed unless all of its children have completed. Since an ONT activity
is transactional, success means that the associated transaction committed.

2. When an ONT activity completes with failure, all of its children that are still in an active state are
completed with failure. Completing with failure means that the associated transaction aborts.

3. When an ONT activity completes with failure, all of its children that previously completed with
success will be compensated (in reverse order of completion), if compensating actions have been
defined for them. The behavior of the compensation action is defined by the application.

4.2 Using the ONT Model

We have implemented a sample application based on the travel agency example in order to test the
implementation of the ONT HLS. The application provides a booking service for a package holiday
consisting of a flight and a hotel. For this prototype, we model both the airline and the hotel services as
stateless session beans. The user just inputs a name and the number of tickets and rooms needed through
a web page (Figure 4). If the current availability of either tickets or rooms is less than the number
requested, the reservation will fail and all its effects must be undone (compensated).

The web page shows the current availability of flight seats and hotel rooms in order to check the
invocation results.

Figure 4: Use of ONT HLS

The application consists of one activity with two nested sequential activities: one for the flight reser-
vation and another for the hotel booking. The top level activity is created when the servlet invokes the
makeReservation method on the TravelAgency EJB (Listing 2, line 9). The ONT service is con-
tacted in the getUserOpenNested private method (Listing 1). The top level activity commits if both
the tickets and the hotel rooms can be booked (line 13). Otherwise, the top level activity is rolled back

Prototype of the Transactional Engine 1.0 6

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

(lines 17, 20, 23). The invocation of the reserveSeats method creates a nested activity (Listing 3,
line 4) that checks the availability of seats. If there are enough seats the activity will commit (line 24).
The commit method takes as parameter the compensation action (lines 22, 23). The ONT service will
invoke the compensation to undo the flight reservation, if the top level activity does not succeed.

Compensation actions are classes that implement the Compensator interface (Listing 4). This
class must implement a compensate method (Listing 4, line 5), which will be invoked by the ONT
service to compensate the corresponding activity. The compensate method in this class undoes the ticket
reservation invoking the unreserveSeats method of the airline EJB (Listing 4, line 8). The
unreserveSeats method is executed as an activity (Listing 5, line 4). This method just returns the
tickets, i.e, it increments the number of available seats in the flight (Listing 5, line 14), and commits the
activity (Listing 5, line 15). If the database operation fails, the activity rolls back (Listing 5, line 21).

Listing 1: Getting the UserOpenNested interface

1 p r i v a t e UserOpenNested ge tUse rOpenNes ted () {
2 C o n t e x t c t x = n u l l ;
3
4 t ry {
5 c t x = new I n i t i a l C o n t e x t () ;
6 uon = (UserOpenNested) c t x . lookup (” UserOpenNested”) ;
7 } catch (. . .) {
8 . . .
9 }

10 re turn uon ;
11 }

Listing 2: Travel Agency EJB code

1 pub l i c void m a k e R e s e r v a t i o n (S t r i n g name , i n t nSea t s , i n t nRooms)
2 throws E x c e p t i o n {
3
4 A i r l i n e a i r l i n e = g e t A d a p t A i r l i n e E J B () ;
5 H o t e l h o t e l = ge tAdap tHote lEJB () ;
6 UserOpenNested uon = ge tUse rOpenNes ted () ;
7
8 t ry {
9 uon . a c t i v i t y B e g i n (0) ;

10 t ry {
11 a i r l i n e . r e s e r v e S e a t s (n S e a t s) ;
12 h o t e l . reserveRooms (nRooms) ;
13 uon . a c t i v i t y C o m m i t (n u l l) ;
14 } catch (RemoteExcept ion e) {
15 . . .
16 } catch (No tEnoughSea t sExcep t ion e) {
17 uon . a c t i v i t y R o l l b a c k () ;
18 throw e ;
19 } catch (NotEnoughRoomsException e) {
20 uon . a c t i v i t y R o l l b a c k () ;
21 throw e ;
22 } catch (SQLException e) {

Prototype of the Transactional Engine 1.0 7

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

23 uon . a c t i v i t y R o l l b a c k () ;
24 throw e ;
25 }
26 } catch (. . .) {
27 . . .
28 }
29 }

Listing 3: Airline EJB code
1 pub l i c i n t r e s e r v e S e a t s (i n t n S e a t s) throws NotEnoughSea t sExcep t ion ,

SQLException {
2 UserOpenNested uon = ge tUse rOpenNes ted () ;
3 t ry {
4 uon . a c t i v i t y B e g i n (0) ;
5 C o n t e x t c t x = new I n i t i a l C o n t e x t () ;
6 Da taSource ds = (Da taSource) c t x . lookup (” j a v a : / Adap tAi r l i neDS ”) ;
7 Connec t ion c = ds . g e t C o n n e c t i o n () ;
8 S t a t e m e n t s t m t = c . c r e a t e S t a t e m e n t () ;
9 R e s u l t S e t r s = s t m t . e x e c u t e Q ue ry (”SELECT s e a t s FROM f l i g h t s ”) ;

10 i n t f r e e S e a t s = 0 ;
11 r s . n e x t () ;
12 f r e e S e a t s = r s . g e t I n t (1) ;
13 i f ((f r e e S e a t s − n S e a t s) < 0) {
14 uon . a c t i v i t y R o l l b a c k () ;
15 r s . c l o s e () ;
16 s t m t . c l o s e () ;
17 c . c l o s e () ;
18 throw new NotEnoughSea t sExcep t ion () ;
19 } e l s e {
20 s t m t . e x e c u t e U p d a t e (
21 ”UPDATE f l i g h t s SET s e a t s = ” + (f r e e S e a t s − n S e a t s)) ;
22 R e s e r v e S e a t s C o m p e n s a t i o n c o m p e n s a t ion =
23 new R e s e r v e S e a t s C o m p e n s a t i o n (t h i s , n S e a t s) ;
24 uon . a c t i v i t y C o m m i t (c o m p e n s a t i on) ;
25 }
26 r s . c l o s e () ;
27 s t m t . c l o s e () ;
28 c . c l o s e () ;
29 } catch (SQLException e) {
30 t ry {
31 uon . a c t i v i t y R o l l b a c k () ;
32 } catch (. . .) {
33 . . .
34 }
35 } catch (No tEnoughSea t sExcep t ion e) {
36 throw e ;
37 }
38 . . .
39 }

Prototype of the Transactional Engine 1.0 8

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Listing 4: Compensation class for reserveSeats
1 pub l i c c l a s s R e s e r v e S e a t s C o m p e n s a t i o n implements Compensator {
2 A i r l i n e B e a n a i r l i n e ;
3 i n t s e a t s ;
4 . . .
5 pub l i c void compensa te () {
6 System . o u t . p r i n t l n (”AIRLINE RESERVATION COMPENSATION”) ;
7 t ry {
8 a i r l i n e . u n r e s e r v e S e a t s (s e a t s) ;
9 } catch (C o m p e n s a t i o n E r r o r E x c e p t i o n e) {

10 System . o u t . p r i n t l n (
11 ”AIRLINE RESERVATION COMPENSATION NOT PERFORMED DUE TO A DB ERROR

! ! ! ”) ;
12 }
13 System . o u t . p r i n t l n (”AIRLINE RESERVATION COMPENSATION SUCCEEDED ! ! ! ”) ;
14 }
15 . . .
16 }

Listing 5: unreserveSeats method of the Airline EJB
1 pub l i c i n t u n r e s e r v e S e a t s (i n t n S e a t s) throws SQLException {
2 UserOpenNested uon = ge tUse rOpenNes ted () ;
3 t ry {
4 uon . a c t i v i t y B e g i n (0) ;
5 C o n t e x t c t x = new I n i t i a l C o n t e x t () ;
6 Da taSource ds = (Da taSource) c t x . lookup (” j a v a : / Adap tAi r l i neDS ”) ;
7 Connec t ion c = ds . g e t C o n n e c t i o n () ;
8 S t a t e m e n t s t m t = c . c r e a t e S t a t e m e n t () ;
9 R e s u l t S e t r s = s t m t . e x e c u t e Q ue ry (”SELECT s e a t s FROM f l i g h t s ”) ;

10 i n t f r e e S e a t s = 0 ;
11 r s . n e x t () ;
12 f r e e S e a t s = r s . g e t I n t (1) ;
13 s t m t . e x e c u t e U p d a t e (
14 ”UPDATE f l i g h t s SET s e a t s = ” + (f r e e S e a t s + n S e a t s)) ;
15 uon . a c t i v i t y C o m m i t (n u l l) ;
16 r s . c l o s e () ;
17 s t m t . c l o s e () ;
18 c . c l o s e () ;
19 } catch (SQLException e) {
20 t ry {
21 uon . a c t i v i t y R o l l b a c k () ;
22 } catch (. . .) {
23 . . .
24 }
25 throw new C o m p e n s a t i o n E r r o r E x c e p t i o n () ;
26 } catch (. . .) {
27 . . .
28 }
29 re turn 0 ;
30 }

Prototype of the Transactional Engine 1.0 9

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

5 ONT HLS Implementation

The ONT HLS implements the specific signalset, signals, actions and outcomes required by the open nested trans-
action model.

Applications use the UserOpenNested interface, which provides the activityBegin, activityCo
mmit and activityRollbackmethods.

The activityBeginmethod invokes the AS to create an activity and invokes the JTA to create a transaction.
Any existing transaction on the current thread is suspended before the creation of the new activity and transaction.

The activityCommit invokes the JTA to commit the associated transaction. If the transaction commits
and a Compensator object was provided in the activityCommit, and the commit corresponds to a nested
activity, the ONT HLS adds an action, responsible for compensation, to the parent activity. This action specifies
interest in the ONT signalset. If the commit is related to a top-level activity, the AS is invoked to complete
the activity with CompletionStatusSuccess using the ONT signalset. If the transaction aborts, the AS is
invoked to complete the activity with status CompletionStatusFail.

The activityRollback method invokes the JTA to roll back the associated transaction and then invokes
the AS to complete the activity with status CompletionStatusFail.

The ONT service creates two signals: activity rolledback and activity committed, and the fol-
lowing outcomes: parent add successful, parent has completed, parent add failed, com
pensate successful, and compensate failed. The signalset is invoked by the AS once an activity
completes. The AS provides the signalset with the completion status of the activity. The signalset returns the
activity committed signal if the completion status was CompletionStatusSuccess, or the activit
y rolledback signal if the completion status was CompletionStatusFail.

In the ONT model, compensation objects are wrapped by actions. If an action receives the activity rolle
dback signal, it will invoke the compensation. If an action receives the activity committed signal, the
action will register the compensation object with the parent activity coordinator, if any. If there is no parent, the
compensation object is not used and the action returns compensate successful. If the compensation object
is registered with the parent activity, the action returns the outcome parent add successful. If the action
fails to register the compensation object, the action returns the outcome parent has completed if the parent
has completed, or parent add failed if the registration with the parent fails due to any other reason.

If a parent activity fails (CompletionStatusFail) or any ancestor, its committed children (descen-
dants) will be compensated. Compensation happens by invoking the corresponding compensation objects when
the signal activity rolledback is sent. If the compensation succeeds, the action returns the outcome
compensate successful. Otherwise, it returns the outcome compensate failed.

5.1 Deploying the Activity Service and an HLS

In order to be available to the HLS, the AS must be registered as a service into a registration service (JNDI). The
AS uses JNDI to publish its interfaces (e.g. java:comp/UserActivity and services:activity/ActivityManager).

An HLS implementation may also require a registration service to register its public interface and a transaction
service, if it needs to demarcate transactions.

We have integrated and tested our implementation with the JBOSS application server (vesion 3.2.1). Both the
AS and the ONT HLS register their interfaces using the JBOSS JNDI registration service. The ONT HLS uses the
JBOSS transaction service in order to demarcate transactions.

6 Integration with Web Services

This deliverable is aimed to provide the core support for advanced transaction models. Although, the integration
with web services is not within the deliverable scope, we include a couple of use cases on this topic to illustrate
how this integration can be materialized.

There are two ways of using the activity service within a web service:

Prototype of the Transactional Engine 1.0 10

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

1. A non-conversational web service. An operation of a web service can begin one or more activities, but
the operation completes all the activities before returning control to the client. In this case there is nothing
specific on the use of an HLS. The implementation of the web service operation will invoke an HLS as in
the travel agency example.

2. A conversational web service. The behaviour of a conversational web service is similar to the one of state-
full session beans in J2EE. A conversational web service may keep information (activities) about previous
invocations from a client. In a conversational web service an activity spans several invocations of a web
service from the same client, i.e., an operation of a web service begins one or more activities, but does not
complete all of them. Other web service invocations from the same client can be executed within the scope
of activities started by previous web service invocations. The activity service specification mandates that ac-
tivities are associated to threads. However, each web service invocation can be executed by different threads
in the SOAP engine. This raises the problem that ulterior invocations within the same conversation would
not be associated with the activities started by the previous invocations from that client. For this reason,
the ONT HLS has been extended with operations to suspend and resume ONT activities across invocations.
Before completing a web service invocation part of a conversation, it is necessary to suspend the current
activity and store it as part of a session object keeping the state of the conversation. Ulterior invocations on
behalf of the same client will recover the activity and resume it before performing the processing associated
to the web service operation.

6.1 A Conversational Web Service

This example extends our previous example of the travel agency into a conversational web service. We have used
AXIS 1.1 as a SOAP engine and deployed the web service using a session scope.

The travel agency web service contains two operations, which reserve tickets for a flight or a number of
rooms in a hotel. Listings 6 and 7 show the java code for the methods that implement these two operations.
A client must invoke the operation to reserve tickets (reserveSeats) and then the operation to book ho-
tel rooms (reserveRooms) in that order. These two operations are executed as an ONT that starts with the
reserveSeats invocation (Listing 6, line 9) and finishes in the reserveSooms operation (Listing 7, lines 11,
14, 21). In order to keep the same ONT across invocations, the activity must be suspended before a web service
operation finishes and stored (Listing 6, lines 28, 29). The next operation executed as part of the same conversation
will start resuming that activity (Listing 7, lines 6, 7). If a conversation spans more web service operations, each
operation will include the code to resume the current activity and the code to suspend. The last operation of the
conversation will finish the activity (either committing or rolling it back).

Listing 6: ReserveSeats web service operation

1 S i m p l e S e s s i o n s e s s i o n = new S i m p l e S e s s i o n () ;
2 . . .
3 pub l i c i n t r e s e r v e S e a t s (i n t i n 0)
4 throws j a v a . rmi . RemoteExcept ion ,
5 NotEnoughSea t sExcep t ion ,
6 DBException {
7
8 t ry {
9 uon . a c t i v i t y B e g i n (0) ;

10 a i r l i n e . r e s e r v e S e a t s (i n 0) ;
11 } catch (No tEnoughSea t sExcep t ion e) {
12 t ry {
13 uon . a c t i v i t y R o l l b a c k () ;
14 } catch (. . .) {
15 . . .

Prototype of the Transactional Engine 1.0 11

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

16 }
17 throw new NotEnoughSea t sExcep t ion () ;
18 } catch (SQLException e) {
19 t ry {
20 uon . a c t i v i t y R o l l b a c k () ;
21 } catch (. . .) {
22 . . .
23 }
24 throw new DBException () ;
25 } catch (. . .) {
26 . . .
27 }
28 ONTAct iv i ty a c t i v i t y = uon . suspend () ;
29 s e s s i o n . s e t (”ACTIVITY” , a c t i v i t y) ;
30 re turn i n 0 ;
31 }

Listing 7: ReserveRooms web service operation

1 pub l i c i n t reserveRooms (i n t i n 0)
2 throws j a v a . rmi . RemoteExcept ion ,
3 NotEnoughRoomsException ,
4 DBException {
5
6 ONTAct iv i ty a c t i v i t y = (ONTAct iv i ty) s . g e t (”ACTIVITY”) ;
7 uon . resume (a c t i v i t y) ;
8
9 t ry {

10 h o t e l . reserveRooms (i n 0) ;
11 uon . a c t i v i t y C o m m i t (n u l l) ;
12 } catch (NotEnoughRoomsException e) {
13 t ry {
14 uon . a c t i v i t y R o l l b a c k () ;
15 } catch (. . .) {
16 . . .
17 }
18 throw new NotEnoughRoomsException () ;
19 } catch (SQLException e) {
20 t ry {
21 uon . a c t i v i t y R o l l b a c k () ;
22 } catch (. . .) {
23 . . .
24 }
25 throw new DBException () ;
26 } catch (. . .) {
27 . . .
28 }
29 re turn i n 0 ;
30 }

Prototype of the Transactional Engine 1.0 12

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

A Software Distribution

The software distribution of this deliverable consists of:

• A zip file, jass1-0.zip, with the installation instructions, class files, and an Ant build file to deploy
the activity service, the ONT HLS, and the travel agency example. This file can be downloaded from:
http://adapt.ls.fi.upm.es/private/software/jass1-0.zip

• A zip file, jass1-0-src.zip, with the java source files plus the JavaDoc documentation. This file can be
downloaded from: http://adapt.ls.fi.upm.es/private/software/jass1-0-src.zip

Prototype of the Transactional Engine 1.0 13

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

References

[HLR+03] I. Houston, M. C. Little, I. Robinson, S. K. Shrivastava, and S. M. Wheater. The CORBA Activ-
ity Service Framework for Supporting Extended Transactions. Software Practice and Experience,
33(4):351–373, 2003.

[JP03] R. Jiménez-Peris and M. Patiño-Martı́nez. ADAPT Project. Deliverable D5: Transaction Support.
http://adapt.ls.fi.upm.es/deliverables/transactions.pdf, 2003.

[OMG02] OMG. Additional Structuring Mechanisms for the OTS Specification 1.0. September 2002.

[Sun] Sun. Activity Service and Open Nested APIs.
http://jcp.org/aboutJava/communityprocess/review/jsr095/index.html.

[Sun99a] Sun. Java Transaction API Specification (JTA) 1.01. April 1999.

[Sun99b] Sun. Java Transaction Service (JTS) 1.0. December 1999.

[Sun03] Sun. J2EE Activity Service Specification Draft 0.1. June 2003.

[WS92] G. Weikum and H. J. Schek. Concepts and Applications of Multilevel Transactions and Open Nested
Transactions. In A. K. Elmagarmid, editor, Database Transaction Models, chapter 13, pages 515–554.
1992.

Prototype of the Transactional Engine 1.0 14

